
Copyright ©: University of Illinois CS 241 Staff

Announcements

 Survey: tinyurl.com/cs241survey
 No discussion section Thursday
 But lecture will happen on Friday

 Correction from last time... pipe() gives
you a pair of file descriptors:
 fildes[0] is output end: you read from it
 fildes[1] is input end: you write to it

1

Memory mapped files

Copyright ©: University of Illinois CS 241 Staff

Two ways to access a file

 File I/O
 Calls to file I/O functions (e.g., read() and

write())
 First copy data to a kernel's intermediary buffer
 Then transfer data to the physical file or the process

 Intermediary buffering is slow and expensive
 Alternative: Memory Mapping

 Eliminate intermediary buffering
 Significantly improve performance

Copyright ©: University of Illinois CS 241 Staff

Memory Mapped Files

 Memory-mapped file I/O
 Map a disk block to a page in memory
 Allows file I/O to be treated as routine memory

access
 Use

 File is initially read using demand paging
 When needed, a page-sized portion of the file is

read from the file system into a physical page of
memory

 Subsequent reads/writes to/from that page are
treated as ordinary memory accesses

Copyright ©: University of Illinois CS 241 Staff

Memory Mapped Files

Memory Mapped File
In Blocks

VM of User 1

mmap requests

Disk

File

Blocks of data
From file mapped
To VM

VM of User 2

Blocks of data
From file mapped
To VM

Copyright ©: University of Illinois CS 241 Staff

Memory Mapped Files:
Benefits

 Treats file I/O like memory access rather
than read(), write() system calls
 Simplifies file access; e.g., no need to fseek()

 Several processes can map the same file
 Allows pages in memory to be shared -- saves

memory space
 Dynamic loading

 Map executable files and shared libraries into address
space

 Programs can load and unload executable code sections
dynamically

Copyright ©: University of Illinois CS 241 Staff

Memory Mapped Files:
Benefits

 Streamlining file access
 Access a file mapped into a memory region via

pointers
 Same as accessing ordinary variables and

objects
 Memory persistence

 Enables processes to share memory sections
that persist independently of the lifetime of a
certain process

Copyright ©: University of Illinois CS 241 Staff

POSIX Memory Mapping

#include <sys/mman.h>
void *mmap(void *addr, size_t len, int prot,

 int flags, int fd, off_t off);
 Memory map a file: establish mapping from the address space

of the process to the object represented by the file descriptor
 Parameters:

 addr: the starting memory address into which to map the file
 len: the length of the data to map into memory
 prot: the kind of access to the memory mapped region
 flags: flags that can be set for the system call
 fd: file descriptor
 off: the offset in the file to start mapping from

Copyright ©: University of Illinois CS 241 Staff

POSIX Memory Mapping

#include <sys/mman.h>
void *mmap(void *addr, size_t len, int prot,

 int flags, int fd, off_t off);

File fd

Memory

addr

lenoff

Copyright ©: University of Illinois CS 241 Staff

POSIX Memory Mapping

#include <sys/mman.h>
void *mmap(void *addr, size_t len, int prot,

 int flags, int fd, off_t off);
 Memory map a file

 Establish a mapping between the address space of the process
to the memory object represented by the file descriptor

 Return value: pointer to mapped region
 On success, implementation-defined function of addr and

flags.
 On failure, sets errno and returns MAP_FAILED

Copyright ©: University of Illinois CS 241 Staff

mmap options

 Protection Flags
 PROT_READ Data can be read
 PROT_WRITE Data can be written
 PROT_EXEC Data can be executed
 PROT_NONE Data cannot be accessed

 Flags
 MAP_SHARED Changes are shared.
 MAP_PRIVATE Changes are private.
 MAP_FIXED Interpret addr exactly

Copyright ©: University of Illinois CS 241 Staff

mmap Example

 Map first 4kb of file and read int
#include <errno.h>

#include <fcntl.h>
#include <sys/mman.h>

#include <sys/types.h>
int main(int argc, char *argv[]) {
 int fd;

 void *pregion;
 if (fd = open(argv[1], O_RDONLY) <0) {

 perror("failed on open");
 return –1;
 }

Copyright ©: University of Illinois CS 241 Staff

mmap Example

 pregion = mmap(NULL, 4096, PROT_READ,
 MAP_SHARED,fd,0);

 if (pregion == MAP_FAILED) {
 perror("mmap failed")

 return –1;
 }
 close(fd); /* close the physical file */

 /* access mapped memory; read the first int in
 * the mapped file */

 int val = *((int*) pregion);
}

Copyright ©: University of Illinois CS 241 Staff

munmap

#include <sys/mman.h>
int munmap(void *addr, size_t len);

 Remove a mapping
 Return value

 0 on success
 -1 on error, sets errno

 Parameters:
 addr: returned from mmap()
 len: same as the len passed to mmap()

Copyright ©: University of Illinois CS 241 Staff

msync

#include <sys/mman.h>
int msync(void *addr, size_t len, int flags);

 Write all modified data to permanent storage locations
 Return value

 0 on success
 -1 on error, sets errno

 Parameters:
 addr: returned from mmap()
 len: same as the len passed to mmap()
 flags:

 MS_ASYNC = Perform asynchronous writes
 MS_SYNC = Perform synchronous writes
 MS_INVALIDATE = Invalidate cached data

Copyright ©: University of Illinois CS 241 Staff

Example 2: Shared memory
using mmap

16

#include <stdio.h>

#include <stdlib.h>

#include <errno.h>

#include <fcntl.h>

#include <string.h>

#include <sys/mman.h>

#include <sys/types.h>

int main(int argc, char** argv) {

 int fd;
 char * shared_mem;
 fd = open(argv[1], O_RDWR | O_CREAT);

 shared_mem = mmap(NULL, 10, PROT_READ | PROT_WRITE,
 MAP_SHARED, fd, 0);

 close(fd);

Copyright ©: University of Illinois CS 241 Staff

Example 2: Shared memory
using mmap

17

 if (!strcmp(argv[2], "read")) {
 while (1) {

 printf("%s\n", shared_mem);
 sleep(1);

 }
 }

Reader

 else {
 while (1)

 scanf("%s\n", shared_mem);
 }

}

Writer

Copyright ©: University of Illinois CS 241 Staff

Recall POSIX Shared Mem...

#include <sys/shm.h>
int shmget(key_t key, size_t size, int

shmflg);
 Create shared memory segment

id = shmget(key, size, 0644 | IPC_CREAT);

void *shmat(int shmid, const void
*shmaddr, int shmflg);

 Access to shared memory requires an attach
shared_memory = (char *) shmat(id, (void

*) 0, 0);

Copyright ©: University of Illinois CS 241 Staff

How do mmap and POSIX
shared memory compare?

 mmap named using filesystem
 more flexible, convenient naming
 filesystem permissions

 mmap persists even after programs
quit or machine reboots

19

20Copyright ©: Nahrstedt, Angrave, Abdelzaher, Kravets, Gupta

Signals and Timers

21

Introduction to Signals

 Signal: notification to a process of an event.
 Enables asynchronous events, e.g.,

 Email message arrives on my machine –
mailing agent (user) process should retrieve it

 Invalid memory access happens – OS should
inform scheduler to remove process from the
processor

 Alarm clock goes off – process which sets the
alarm should catch it

 Synchronous event example?

22

Basic Signal Concepts

 Signal is generated when the event that causes it occurs.
 Signal is delivered when a process receives it.
 The lifetime of a signal is the interval between its generation

and delivery.
 Signal that is generated but not delivered is pending.
 Process catches signal if it executes a signal handler when

the signal is delivered.
 Alternatively, a process can ignore a signal when it is

delivered, that is, take no action.
 Process can temporarily prevent signal from being delivered

by blocking it.
 Signal Mask contains the set of signals currently blocked.

23

How Signals Work

Signal Generated
Process

Signal delivered

if signal not blocked
by signal mask...

Signal Caught by handler

Return from Signal Handler

Signal
Mask

Signal Handler Signal
Mask

Process Resumed

Signal
Mask

24

Examples of POSIX Required
Signals

Signal Description Default action
SIGABRT process abort implementation dependent

SIGALRM alarm clock abnormal termination

SIGBUS access undefined part of memory object implementation dependent

SIGCHLD child terminated, stopped or continued ignore

SIGILL invalid hardware instruction implementation dependent

SIGINT interactive attention signal (usually
ctrl-C)

abnormal termination

SIGKILL terminated (cannot be caught or
ignored)

abnormal termination

25

Signal Description Default action
SIGSEGV Invalid memory reference implementation dependent

SIGSTOP Execution stopped stop

SIGTERM termination Abnormal termination

SIGTSTP Terminal stop stop

SIGTTIN Background process attempting read stop

SIGTTOU Background process attempting write stop

SIGURG High bandwidth data available on
socket

ignore

SIGUSR1 User-defined signal 1 abnormal termination

Examples of POSIX Required
Signals

26

Generating Signals

 Signal has a symbolic name starting with
SIG

 Signal names are defined in signal.h
 Users can generate signals (e.g., SIGUSR1)
 OS generates signals when certain errors

occur (e.g., SIGSEGV – invalid memory
reference)

 Specific calls generate signals such as alarm
(e.g., SIGALRM)

