[Today’s lecture

Interprocess communication:
Pipes & FIFOs

Memory-mapped files

Klara Nahrstedt: Experiments with
mobile technologies
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Interprocess Communication
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[Interprocess Communication

What is IPC?

Mechanisms to transfer data between
Processes

Why is it needed?

Not all important procedures can be
easily built in a single process

Copyright ©: University of lllinois CS 241 Staff




Two kinds of IPC

Mind meld Intermediary

Process Process

Message queues
Pipes, FIFOs
Files
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Direct sharing of memory
between processes




UNIX Pipes

#include <unistd.h>
int pipe(int fildes[2]);

Creates a message pipe

Anything can be written to the pipe, and read from the other end
in the order it came in

OS enforces mutual exclusion: only one process at a time

Accessed by a file descriptor, like an ordinary file

Processes sharing the pipe must have same parent in common
Returns a pair of file descriptors

fildes[0] is the output end of the pipe: you read from it

fildes[1] is the input end of the pipe: you write to it
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UNIX Pipe Example

#include
#include
#include
#include

#include

<stdio.h>
<stdlib.h>
<errno.h>
<sys/types.h>
<unistd.h>

int main(void) {
int pfds[2];
char buf[30];

pipe (pfds) ;

if ('fork()) {
printf (" CHILD: writing to pipe\n");
write (pfds[1l], "test", 5);
printf (" CHILD: exiting\n");
exit (0);

} else {
printf ("PARENT: reading from pipe\n") ;
read (pfds[0], buf, 5);
printf ("PARENT: read \"%s\"\n", buf);
wait (NULL) ;

}

return 0;
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UNIX Pipe Example: 1s | we -1

#include <stdio.h> if ('fork()) {
#include <stdlib.h> close(1l) ; /* close stdout */
#include <unistd.h> dup (pfds[1]) ; /* make stdout pfds[l] */
close (pfds[0]); /* don't need this */
execlp("1ls", "1ls", NULL);
int main(void) { } else {
int pfds[2]; close (0) ; /* close stdin */
dup (pfds[0]) ; /* make stdin pfds[0] */
close(pfds[1l]); /* don't need this */
execlp("wec", "wc", "-1", NULL);
}

return 0;

pipe (pfds) ;
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FIFOs

A pipe disappears when no process has it open
FIFOs = named pipes

Special pipes that persist even after all the processes
have closed them

Actually implemented as a file and appears in filesystem!

#include <sys/types.h>
#include <sys/stat.h>

int status;

status = mkfifo("/home/cnd/mod done",

S IWUSR | S IRUSR | S IRGRP | S IROTH);
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FIFO Example: Producer-
[Consumer

Producer
Writes to fifo

Consumer
Reads from fifo
Outputs data to file
Fifo

Ensures atomicity of write
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FIFO Example

#include <errno.h>
#include <fcntl.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/stat.h>

#include "restart.h"

int main (int argc, char *argv[]) {

int requestfd;
if (argc '= 2) { /* name of consumer fifo on the command line */

fprintf (stderr, "Usage: %s fifoname > logfile\n", argv[O0]);

return 1;
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FIFO Example

/* create a named pipe to handle incoming requests */
if ((mkfifo(argv[l], S _IRWXU | S IWGRP| S_IWOTH) == -1)
&& (errno !'= EEXIST))

perror ("Server failed to create a FIFO");

return 1;

/* open a read/write communication endpoint to the pipe */
if ((requestfd = open(argv[l], O RDWR)) == -1) {
perror ("Server failed to open its FIFO");

return 1;

}
/* Write to pipe like you would to a file */
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Demo!
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Memory mapped files
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File Access

File 1/0

Calls to file 1/O functions (e.g., read () and
write())

First copy data to a kernel's intermediary buffer
Then transfer data to the physical file or the process

Intermediary buffering is slow and expensive

Alternative: Memory Mapping

Eliminate intermediary buffering
Significantly improve performance
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Memory Mapped Files

Memory-mapped file I/O
Map a disk block to a page in memory

Allows file I/O to be treated as routine memory
access

Use
File is initially read using demand paging

When needed, a page-sized portion of the file is
read from the file system into a physical page of
memory

Subsequent reads/writes to/from that page are
treated as ordinary memory accesses
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Memory Mapped Files

VM of Use
VM of Use
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Memory Mapped File
In Blocks

mmap requests

Disk

ri

Blocks of data
From file mapped
To VM

r2

Blocks of data
From file mapped
To VM




Memory Mapped Files:
Benefits

Treats file 1/O like memory access rather
than read (), write () system calls

Simplifies file access; e.g., no need to fseek()
Several processes can map the same file

Allows pages in memory to be shared -- saves
memory space
Dynamic loading

Map executable files and shared libraries into address
space

Programs can load and unload executable code sections

dynamically
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Memory Mapped Files:
Benefits

Streamlining file access

Access a file mapped into a memory region via
pointers

Same as accessing ordinary variables and
objects

Memory persistence

Enables processes to share memory sections
that persist independently of the lifetime of a
certain process
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