[Today’s lecture

Interprocess communication:
Pipes & FIFOs

Memory-mapped files

Klara Nahrstedt: Experiments with
mobile technologies

Copyright ©: University of lllinois CS 241 Staff 1

Interprocess Communication

Copyright ©: University of lllinois CS 241 Staff

[Interprocess Communication

What is IPC?

Mechanisms to transfer data between
Processes

Why is it needed?

Not all important procedures can be
easily built in a single process

Copyright ©: University of lllinois CS 241 Staff

Two kinds of IPC

Mind meld Intermediary

Process Process

Message queues
Pipes, FIFOs
Files

Copyright ©: University of lllinois CS 241 Staff 4

Direct sharing of memory
between processes

UNIX Pipes

#include <unistd.h>
int pipe(int fildes[2]);

Creates a message pipe

Anything can be written to the pipe, and read from the other end
in the order it came in

OS enforces mutual exclusion: only one process at a time

Accessed by a file descriptor, like an ordinary file

Processes sharing the pipe must have same parent in common
Returns a pair of file descriptors

fildes[0] is the output end of the pipe: you read from it

fildes[1] is the input end of the pipe: you write to it

Copyright ©: University of lllinois CS 241 Staff

UNIX Pipe Example

#include
#include
#include
#include

#include

<stdio.h>
<stdlib.h>
<errno.h>
<sys/types.h>
<unistd.h>

int main(void) {
int pfds[2];
char buf[30];

pipe (pfds) ;

if ('fork()) {
printf (" CHILD: writing to pipe\n");
write (pfds[1l], "test", 5);
printf (" CHILD: exiting\n");
exit (0);

} else {
printf ("PARENT: reading from pipe\n") ;
read (pfds[0], buf, 5);
printf ("PARENT: read \"%s\"\n", buf);
wait (NULL) ;

}

return 0;

Copyright ©: University of lllinois CS 241 Staff

UNIX Pipe Example: 1s | we -1

#include <stdio.h> if ('fork()) {
#include <stdlib.h> close(1l) ; /* close stdout */
#include <unistd.h> dup (pfds[1]) ; /* make stdout pfds[l] */
close (pfds[0]); /* don't need this */
execlp("1ls", "1ls", NULL);
int main(void) { } else {
int pfds[2]; close (0) ; /* close stdin */
dup (pfds[0]) ; /* make stdin pfds[0] */
close(pfds[1l]); /* don't need this */
execlp("wec", "wc", "-1", NULL);
}

return 0;

pipe (pfds) ;

Copyright ©: University of lllinois CS 241 Staff

FIFOs

A pipe disappears when no process has it open
FIFOs = named pipes

Special pipes that persist even after all the processes
have closed them

Actually implemented as a file and appears in filesystem!

#include <sys/types.h>
#include <sys/stat.h>

int status;

status = mkfifo("/home/cnd/mod done",

S IWUSR | S IRUSR | S IRGRP | S IROTH);
Copyright ©: University of lllinois CS 241 Staff

FIFO Example: Producer-
[Consumer

Producer
Writes to fifo

Consumer
Reads from fifo
Outputs data to file
Fifo

Ensures atomicity of write

Copyright ©: University of lllinois CS 241 Staff

FIFO Example

#include <errno.h>
#include <fcntl.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/stat.h>

#include "restart.h"

int main (int argc, char *argv[]) {

int requestfd;
if (argc '= 2) { /* name of consumer fifo on the command line */

fprintf (stderr, "Usage: %s fifoname > logfile\n", argv[O0]);

return 1;

Copyright ©: University of lllinois CS 241 Staff

FIFO Example

/* create a named pipe to handle incoming requests */
if ((mkfifo(argv[l], S _IRWXU | S IWGRP| S_IWOTH) == -1)
&& (errno !'= EEXIST))

perror ("Server failed to create a FIFO");

return 1;

/* open a read/write communication endpoint to the pipe */
if ((requestfd = open(argv[l], O RDWR)) == -1) {
perror ("Server failed to open its FIFO");

return 1;

}
/* Write to pipe like you would to a file */

} Copyright ©: University of lllinois CS 241 Staff

Demo!

Copyright ©: University of lllinois CS 241 Staff 12

Memory mapped files

Copyright ©: University of lllinois CS 241 Staff

File Access

File 1/0

Calls to file 1/O functions (e.g., read () and
write())

First copy data to a kernel's intermediary buffer
Then transfer data to the physical file or the process

Intermediary buffering is slow and expensive

Alternative: Memory Mapping

Eliminate intermediary buffering
Significantly improve performance

Copyright ©: University of lllinois CS 241 Staff

Memory Mapped Files

Memory-mapped file I/O
Map a disk block to a page in memory

Allows file I/O to be treated as routine memory
access

Use
File is initially read using demand paging

When needed, a page-sized portion of the file is
read from the file system into a physical page of
memory

Subsequent reads/writes to/from that page are
treated as ordinary memory accesses

Copyright ©: University of lllinois CS 241 Staff

Memory Mapped Files

VM of Use
VM of Use

Copyright ©: University of Illinois CS 241 Staff.

Memory Mapped File
In Blocks

mmap requests

Disk

ri

Blocks of data
From file mapped
To VM

r2

Blocks of data
From file mapped
To VM

Memory Mapped Files:
Benefits

Treats file 1/O like memory access rather
than read (), write () system calls

Simplifies file access; e.g., no need to fseek()
Several processes can map the same file

Allows pages in memory to be shared -- saves
memory space
Dynamic loading

Map executable files and shared libraries into address
space

Programs can load and unload executable code sections

dynamically
Copyright ©: University of lllinois CS 241 Staff

Memory Mapped Files:
Benefits

Streamlining file access

Access a file mapped into a memory region via
pointers

Same as accessing ordinary variables and
objects

Memory persistence

Enables processes to share memory sections
that persist independently of the lifetime of a
certain process

Copyright ©: University of lllinois CS 241 Staff

