
Copyright ©: University of Illinois CS 241 Staff

Today’s lecture

 Interprocess communication:
Pipes & FIFOs

 Memory-mapped files

 Klara Nahrstedt: Experiments with
mobile technologies

1

Copyright ©: University of Illinois CS 241 Staff 1

Interprocess Communication

Copyright ©: University of Illinois CS 241 Staff

Interprocess Communication

 What is IPC?
 Mechanisms to transfer data between

processes
 Why is it needed?

 Not all important procedures can be
easily built in a single process

Copyright ©: University of Illinois CS 241 Staff

Two kinds of IPC

4

Mind meld

Direct sharing of memory
between processes

Intermediary

OS

Process Process

Message queues
Pipes, FIFOs
Files

Copyright ©: University of Illinois CS 241 Staff

UNIX Pipes

#include <unistd.h>
int pipe(int fildes[2]);

 Creates a message pipe
 Anything can be written to the pipe, and read from the other end

in the order it came in
 OS enforces mutual exclusion: only one process at a time
 Accessed by a file descriptor, like an ordinary file
 Processes sharing the pipe must have same parent in common

 Returns a pair of file descriptors
 fildes[0] is the output end of the pipe: you read from it
 fildes[1] is the input end of the pipe: you write to it

Copyright ©: University of Illinois CS 241 Staff

UNIX Pipe Example
#include <stdio.h>

#include <stdlib.h>

#include <errno.h>

#include <sys/types.h>

#include <unistd.h>

int main(void) {

 int pfds[2];

 char buf[30];

 pipe(pfds);

 if (!fork()) {
 printf(" CHILD: writing to pipe\n");
 write(pfds[1], "test", 5);
 printf(" CHILD: exiting\n");
 exit(0);
 } else {
 printf("PARENT: reading from pipe\n");
 read(pfds[0], buf, 5);
 printf("PARENT: read \"%s\"\n", buf);
 wait(NULL);
 }
 return 0;
}

Copyright ©: University of Illinois CS 241 Staff

UNIX Pipe Example: ls | wc -l
#include <stdio.h>

#include <stdlib.h>

#include <unistd.h>

int main(void) {

 int pfds[2];

 pipe(pfds);

 if (!fork()) {
 close(1); /* close stdout */
 dup(pfds[1]); /* make stdout pfds[1] */
 close(pfds[0]); /* don't need this */
 execlp("ls", "ls", NULL);
 } else {
 close(0); /* close stdin */
 dup(pfds[0]); /* make stdin pfds[0] */
 close(pfds[1]); /* don't need this */
 execlp("wc", "wc", "-l", NULL);
 }
 return 0;
}

Copyright ©: University of Illinois CS 241 Staff

FIFOs

 A pipe disappears when no process has it open
 FIFOs = named pipes

 Special pipes that persist even after all the processes
have closed them

 Actually implemented as a file and appears in filesystem!

#include <sys/types.h>
#include <sys/stat.h>

int status;
...
status = mkfifo("/home/cnd/mod_done",

 S_IWUSR | S_IRUSR | S_IRGRP | S_IROTH);

Copyright ©: University of Illinois CS 241 Staff

FIFO Example: Producer-
Consumer

 Producer
 Writes to fifo

 Consumer
 Reads from fifo
 Outputs data to file

 Fifo
 Ensures atomicity of write

Copyright ©: University of Illinois CS 241 Staff

FIFO Example
#include <errno.h>

#include <fcntl.h>

#include <stdio.h>

#include <stdlib.h>

#include <unistd.h>

#include <sys/stat.h>

#include "restart.h"

int main (int argc, char *argv[]) {

 int requestfd;

 if (argc != 2) { /* name of consumer fifo on the command line */

 fprintf(stderr, "Usage: %s fifoname > logfile\n", argv[0]);

 return 1;

 }

Copyright ©: University of Illinois CS 241 Staff

FIFO Example
 /* create a named pipe to handle incoming requests */

 if ((mkfifo(argv[1], S_IRWXU | S_IWGRP| S_IWOTH) == -1)

 && (errno != EEXIST))

 {

 perror("Server failed to create a FIFO");

 return 1;

 }

 /* open a read/write communication endpoint to the pipe */

 if ((requestfd = open(argv[1], O_RDWR)) == -1) {

 perror("Server failed to open its FIFO");

 return 1;

 }

 /* Write to pipe like you would to a file */

 ...

}

Copyright ©: University of Illinois CS 241 Staff

Demo!

12

Copyright ©: University of Illinois CS 241 Staff

Memory mapped files

Copyright ©: University of Illinois CS 241 Staff

File Access

 File I/O
 Calls to file I/O functions (e.g., read() and

write())
 First copy data to a kernel's intermediary buffer
 Then transfer data to the physical file or the process

 Intermediary buffering is slow and expensive
 Alternative: Memory Mapping

 Eliminate intermediary buffering
 Significantly improve performance

Copyright ©: University of Illinois CS 241 Staff

Memory Mapped Files

 Memory-mapped file I/O
 Map a disk block to a page in memory
 Allows file I/O to be treated as routine memory

access
 Use

 File is initially read using demand paging
 When needed, a page-sized portion of the file is

read from the file system into a physical page of
memory

 Subsequent reads/writes to/from that page are
treated as ordinary memory accesses

Copyright ©: University of Illinois CS 241 Staff

Memory Mapped Files

Memory Mapped File
In Blocks

VM of User 1

mmap requests

Disk

File

Blocks of data
From file mapped
To VM

VM of User 2

Blocks of data
From file mapped
To VM

Copyright ©: University of Illinois CS 241 Staff

Memory Mapped Files:
Benefits

 Treats file I/O like memory access rather
than read(), write() system calls
 Simplifies file access; e.g., no need to fseek()

 Several processes can map the same file
 Allows pages in memory to be shared -- saves

memory space
 Dynamic loading

 Map executable files and shared libraries into address
space

 Programs can load and unload executable code sections
dynamically

Copyright ©: University of Illinois CS 241 Staff

Memory Mapped Files:
Benefits

 Streamlining file access
 Access a file mapped into a memory region via

pointers
 Same as accessing ordinary variables and

objects
 Memory persistence

 Enables processes to share memory sections
that persist independently of the lifetime of a
certain process

