
Copyright ©: University of Illinois CS 241 Staff 1

Interprocess Communication

Interprocess Communciation

 What is IPC?

 Mechanisms to transfer data between

processes

 Why is it needed?

 Not all important procedures can be

easily built in a single process

Copyright ©: University of Illinois CS 241 Staff

Interprocess Communication

 Cooperating processes
 Can affect or be affected by other processes,

including sharing data

 Benefits
 Information sharing

 Computation speedup

 Modularity

 Convenience

 Need interprocess communication (IPC)
 Shared memory

 Message passing

Copyright ©: University of Illinois CS 241 Staff

IPC Communications Model

 Each process has a private address space

 No process can write to another process’s space

 How can we get data from process A to process B?

Copyright ©: University of Illinois CS 241 Staff

OS address

space

Process A Process B

Private

address

space

Private

address

space

IPC Solutions

 Two options

 Support some form of shared address

space

 Shared memory

 Use OS mechanisms to transport data

from one address space to another

 Files, messages, pipes

Copyright ©: University of Illinois CS 241 Staff

Shared Memory

 Processes share the same segment of

memory directly

 Memory is mapped into the address

space of each sharing process

 Mutual exclusion must be provided by

processes using the shared memory

Copyright ©: University of Illinois CS 241 Staff

POSIX Shared Memory

#include <sys/shm.h>

int shmget(key_t key, size_t size, int
shmflg);

 Create shared memory segment
id = shmget(key, size, 0644 | IPC_CREAT);

void *shmat(int shmid, const void
*shmaddr, int shmflg);

 Access to shared memory requires an attach
shared_memory = (char *) shmat(id, (void

*) 0, 0);

Copyright ©: University of Illinois CS 241 Staff

POSIX Shared Memory

 Write to the shared memory using normal system

call
sprintf(shared_memory, "Writing to shared

memory");

int shmdt(const void *shmaddr);

 Detach the shared memory from its address space
shmdt(shared_memory);

Copyright ©: University of Illinois CS 241 Staff

Shared Memory example

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <sys/types.h>

#include <sys/ipc.h>

#include <sys/shm.h>

#define SHM_SIZE 1024 /* a 1K shared memory segment */

int main(int argc, char *argv[]) {

key_t key;

int shmid;

char *data;

int mode;

Copyright ©: University of Illinois CS 241 Staff

Shared Memory example

/* make the key: */

if ((key = ftok("shmdemo.c", 'R')) == -1) {

perror("ftok");

exit(1);

}

/* connect to (and possibly create) the segment: */

if ((shmid = shmget(key, SHM_SIZE, 0644 | IPC_CREAT)) == -1) {

perror("shmget");

exit(1);

}

/* attach to the segment to get a pointer to it: */

data = shmat(shmid, (void *)0, 0);

if (data == (char *)(-1)) {

perror("shmat");

exit(1);

}

Copyright ©: University of Illinois CS 241 Staff

Shared Memory example

/* read or modify the segment, based on the command line: */

if (argc == 2) {

printf("writing to segment: \"%s\"\n", argv[1]);

strncpy(data, argv[1], SHM_SIZE);

} else

printf("segment contains: \"%s\"\n", data);

/* detach from the segment: */

if (shmdt(data) == -1) {

perror("shmdt");

exit(1);

}

return 0;

}

Copyright ©: University of Illinois CS 241 Staff

Message-based IPC

 Message system

 Enables communication without resorting to
shared variables

 To communicate, processes P and Q must

 Establish a communication link between them

 Exchange messages

 Two operations

 send(message)

 receive(message)

Copyright ©: University of Illinois CS 241 Staff

Direct Message Passing

 Processes must name each other explicitly
 send (P, message)

 Send a message to process P

 receive(Q, message)

 Receive a message from process Q

 receive(&id, message)

 Receive a message from any process

 Link properties
 Established automatically

 Associated with exactly one pair of processes

 There exists exactly one link between each pair

 Limitation
 Must know the name or ID of the process(es)

Copyright ©: University of Illinois CS 241 Staff

Indirect Message Passing

 Process names a mailbox (or port)

 Each mailbox has a unique id

 Processes can communicate only if they share a
mailbox

 Link properties

 Established only if processes share a common
mailbox

 May be associated with many processes

 Each pair of processes may share multiple links

 Link may be unidirectional or bi-directional

Copyright ©: University of Illinois CS 241 Staff

Mailbox Ownership

 Process
 Only the owner receives messages through

mailbox

 Other processes only send.

 When process terminates, any “owned”
mailboxes are destroyed.

 System
 Process that creates mailbox owns it (and so

may receive through it) but may transfer
ownership to another process.

Copyright ©: University of Illinois CS 241 Staff

Indirect Message Passing

 Mailboxes are a resource

 Create and Destroy

 Primitives

 send(A, message)

 Send a message to mailbox A

 receive(A, message)

 Receive a message from mailbox A

Copyright ©: University of Illinois CS 241 Staff

Indirect Message Passing

 Mailbox sharing
 P1, P2, and P3 share mailbox A

 P1, sends; P2 and P3 receive

 Who gets the message?

 Options
 Allow a link to be associated with at most two

processes

 Allow only one process at a time to execute a
receive operation

 Allow the system to arbitrarily select the receiver
and notify the sender

Copyright ©: University of Illinois CS 241 Staff

IPC and Synchronization

 Blocking == synchronous
 Blocking send

 Sender blocks until the message is received

 Blocking receive
 Receiver blocks until a message is available

 Non-blocking == asynchronous
 Non-blocking send

 Sender sends the message and continues

 Non-blocking receive
 Receiver receives a valid message or null

Copyright ©: University of Illinois CS 241 Staff

Buffering

 IPC message queues
1. Zero capacity

 No messages may be queued

 Sender must wait for receiver

2. Bounded capacity
 Finite buffer of n messages

 Sender blocks if link is full

3. Unbounded capacity
 Infinite buffer space

 Sender never blocks

Copyright ©: University of Illinois CS 241 Staff

Buffering

 Is a buffer needed?
P1: send(P2, x) P2: receive(P1, x)

receive(P2, y) send(P1, y)

 Is a buffer needed?
P1: send(P2, x) P2: send(P1, x)

receive(P2, y) receive(P1, y)

Copyright ©: University of Illinois CS 241 Staff

Example: Message Passing

void Producer() {

while (TRUE) {

/* produce item */

build_message(&m, item);

send(consumer, &m);

receive(consumer, &m); /* wait for ack */

}

}

void Consumer {

while(TRUE) {

receive(producer, &m);

extract_item(&m, &item);

send(producer, &m); /* ack */

/* consume item */

}

}

Copyright ©: University of Illinois CS 241 Staff

UNIX Pipes

#include <unistd.h>

int pipe(int fildes[2]);

 Creates a message pipe

 Anything can be written to the pipe, and read from the other end

in the order it came in

 OS enforces mutual exclusion: only one process at a time

 Accessed by a file descriptor, like an ordinary file

 Processes sharing the pipe must have same parent in common

 Returns a pair of file descriptors

 fildes[0] is connected to the write end of the pipe

 fildes[1] is connected to the read end of the pipe

Copyright ©: University of Illinois CS 241 Staff

UNIX Pipe Example

#include <stdio.h>

#include <stdlib.h>

#include <errno.h>

#include <sys/types.h>

#include <unistd.h>

int main(void) {

int pfds[2];

char buf[30];

pipe(pfds);

if (!fork()) {

printf(" CHILD: writing to pipe\n");

write(pfds[1], "test", 5);

printf(" CHILD: exiting\n");

exit(0);

} else {

printf("PARENT: reading from pipe\n");

read(pfds[0], buf, 5);

printf("PARENT: read \"%s\"\n", buf);

wait(NULL);

}

return 0;

}

Copyright ©: University of Illinois CS 241 Staff

UNIX Pipe Example: ls | wc -l

#include <stdio.h>

#include <stdlib.h>

#include <unistd.h>

int main(void) {

int pfds[2];

pipe(pfds);

if (!fork()) {

close(1); /* close stdout */

dup(pfds[1]); /* make stdout pfds[1] */

close(pfds[0]); /* don't need this */

execlp("ls", "ls", NULL);

} else {

close(0); /* close stdin */

dup(pfds[0]); /* make stdin pfds[0] */

close(pfds[1]); /* don't need this */

execlp("wc", "wc", "-l", NULL);

}

return 0;

}

Copyright ©: University of Illinois CS 241 Staff

FIFOs

 A pipe disappears when no process has it open

 FIFOs = named pipes

 Special pipes that persist even after all the processes

have closed them

 Actually implemented as a file

#include <sys/types.h>

#include <sys/stat.h>

int status;

...

status = mkfifo("/home/cnd/mod_done",

S_IWUSR | S_IRUSR | S_IRGRP | S_IROTH);

Copyright ©: University of Illinois CS 241 Staff

FIFO Example: Producer-

Consumer

 Producer

 Writes to fifo

 Consumer

 Reads from fifo

 Outputs data to file

 Fifo

 Ensures atomicity of write

Copyright ©: University of Illinois CS 241 Staff

FIFO Example

#include <errno.h>

#include <fcntl.h>

#include <stdio.h>

#include <stdlib.h>

#include <unistd.h>

#include <sys/stat.h>

#include "restart.h"

int main (int argc, char *argv[]) {

int requestfd;

if (argc != 2) { /* name of consumer fifo on the command line */

fprintf(stderr, "Usage: %s fifoname > logfile\n", argv[0]);

return 1;

}

Copyright ©: University of Illinois CS 241 Staff

FIFO Example

/* create a named pipe to handle incoming requests */

if ((mkfifo(argv[1], S_IRWXU | S_IWGRP| S_IWOTH) == -1)

&& (errno != EEXIST)) {

perror("Server failed to create a FIFO");

return 1;

}

/* open a read/write communication endpoint to the pipe */

if ((requestfd = open(argv[1], O_RDWR)) == -1) {

perror("Server failed to open its FIFO");

return 1;

}

/* Write to pipe like you would to a file */

...

}

Copyright ©: University of Illinois CS 241 Staff

Signals

 Why do we need Signals?

 Enable asynchronous events

 Examples of asynchronous events:

 Email message arrives on my machine – mailing agent

(user) process should retrieve it

 Invalid memory access happens – OS should inform

scheduler to remove process from the processor

 Alarm clock goes off – process which sets the alarm

should catch it

Copyright ©: University of Illinois CS 241 Staff

Unix Signals

 Software mechanism that allows one process to
notify another that some event has occurred

 Each signal has a a numeric value
 02, SIGINT: to interrupt a process

 09, SIGKILL: to terminate a process

 Each signal is maintained as a single bit in the
process table entry of the receiving process
 The bit is set when the corresponding signal arrives

 A signal is processed as soon as the process runs in user
mode

Copyright ©: University of Illinois CS 241 Staff

Basic Signal Concepts

 Generation
 When the event that caused the signal occurred

 Delivery
 When a process receives it

 Lifetime
 Interval between generation and delivery

 Pending
 A signal is pending until it is delivered

Copyright ©: University of Illinois CS 241 Staff

Basic Signal Concepts

 Target process

 Catches signal

 Executes signal handler

 May ignore a signal

 Blocked signals

 Processes can temporarily prevent signal
from being delivered

 Signal Mask

 Set of currently blocked signals

Copyright ©: University of Illinois CS 241 Staff

33

How Signals Work

Signal Generated
Process

Signal Handler

Signal delivered

Signal not blocked

Signal Caught by handler

Return from Signal Handler

Process Resumed

Signal

Mask

Signal

Mask

Signal

Mask

Copyright ©: University of Illinois CS 241 Staff

Examples of Required POSIX

Signals

Signal Description default action

SIGABRT process abort implementation dependent

SIGALRM alarm clock abnormal termination

SIGBUS access undefined part of memory

object

implementation dependent

SIGCHLD child terminated, stopped or continued ignore

SIGILL invalid hardware instruction implementation dependent

SIGINT interactive attention signal (usually

ctrl-C)

abnormal termination

SIGKILL terminated (cannot be caught or

ignored)

abnormal termination

34Copyright ©: University of Illinois CS 241 Staff

Examples of Required POSIX

Signals

Signal Description default action

SIGSEGV Invalid memory reference implementation dependent

SIGSTOP Execution stopped stop

SIGTERM termination Abnormal termination

SIGTSTP Terminal stop stop

SIGTTIN Background process attempting

read

stop

SIGTTOU Background process attempting

write

stop

SIGURG High bandwidth data available

on socket

ignore

SIGUSR1 User-defined signal 1 abnormal termination

35Copyright ©: University of Illinois CS 241 Staff

Generating Signals

 Signal names

 Symbolic name starting with SIG

 Defined in signal.h

 Users can generate signals

 e.g., SIGUSR1

 OS generated

 When certain errors occur

 e.g., SIGSEGV – invalid memory reference

 Specific calls generate signals such as alarm

(e.g., SIGALRM)
36Copyright ©: University of Illinois CS 241 Staff

Command Line Generated

Signals

 kill

 A signal to a process from the command line

 kill -l: lists all system signals

 kill [-signal] pid: send a signal to a

process

 Optional argument may be a name or a number

(default is SIGTERM).

 Unconditionally kill a process

 kill -9 pid

 kill -SIGKILL pid.

Copyright ©: University of Illinois CS 241 Staff 37

Command Line Generated

Signals

 CTRL-C = SIGINT

 Interactive attention signal

 CTRL-Z = SIGSTOP

 Execution stopped – cannot be ignored

 CTRL-Y = SIGCONT

 Execution continued if stopped

 CTRL-D = SIGQUIT

 interactive termination: core dump

Copyright ©: University of Illinois CS 241 Staff 38

39

Timers Generate SIGALRM

Signals

 #include <unistd.h>

 unsigned alarm (unsigned seconds);

 alarm(20) creates SIGALRM to calling

process after 20 real time seconds.

 Calls are not stacked

 alarm(0) cancels alarm

Copyright ©: University of Illinois CS 241 Staff

