
Copyright ©: University of Illinois CS 241 Staff 1

Interprocess Communication

Interprocess Communciation

 What is IPC?

 Mechanisms to transfer data between

processes

 Why is it needed?

 Not all important procedures can be

easily built in a single process

Copyright ©: University of Illinois CS 241 Staff

Interprocess Communication

 Cooperating processes
 Can affect or be affected by other processes,

including sharing data

 Benefits
 Information sharing

 Computation speedup

 Modularity

 Convenience

 Need interprocess communication (IPC)
 Shared memory

 Message passing

Copyright ©: University of Illinois CS 241 Staff

IPC Communications Model

 Each process has a private address space

 No process can write to another process’s space

 How can we get data from process A to process B?

Copyright ©: University of Illinois CS 241 Staff

OS address

space

Process A Process B

Private

address

space

Private

address

space

IPC Solutions

 Two options

 Support some form of shared address

space

 Shared memory

 Use OS mechanisms to transport data

from one address space to another

 Files, messages, pipes

Copyright ©: University of Illinois CS 241 Staff

Shared Memory

 Processes share the same segment of

memory directly

 Memory is mapped into the address

space of each sharing process

 Mutual exclusion must be provided by

processes using the shared memory

Copyright ©: University of Illinois CS 241 Staff

POSIX Shared Memory

#include <sys/shm.h>

int shmget(key_t key, size_t size, int
shmflg);

 Create shared memory segment
id = shmget(key, size, 0644 | IPC_CREAT);

void *shmat(int shmid, const void
*shmaddr, int shmflg);

 Access to shared memory requires an attach
shared_memory = (char *) shmat(id, (void

*) 0, 0);

Copyright ©: University of Illinois CS 241 Staff

POSIX Shared Memory

 Write to the shared memory using normal system

call
sprintf(shared_memory, "Writing to shared

memory");

int shmdt(const void *shmaddr);

 Detach the shared memory from its address space
shmdt(shared_memory);

Copyright ©: University of Illinois CS 241 Staff

Shared Memory example

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <sys/types.h>

#include <sys/ipc.h>

#include <sys/shm.h>

#define SHM_SIZE 1024 /* a 1K shared memory segment */

int main(int argc, char *argv[]) {

key_t key;

int shmid;

char *data;

int mode;

Copyright ©: University of Illinois CS 241 Staff

Shared Memory example

/* make the key: */

if ((key = ftok("shmdemo.c", 'R')) == -1) {

perror("ftok");

exit(1);

}

/* connect to (and possibly create) the segment: */

if ((shmid = shmget(key, SHM_SIZE, 0644 | IPC_CREAT)) == -1) {

perror("shmget");

exit(1);

}

/* attach to the segment to get a pointer to it: */

data = shmat(shmid, (void *)0, 0);

if (data == (char *)(-1)) {

perror("shmat");

exit(1);

}

Copyright ©: University of Illinois CS 241 Staff

Shared Memory example

/* read or modify the segment, based on the command line: */

if (argc == 2) {

printf("writing to segment: \"%s\"\n", argv[1]);

strncpy(data, argv[1], SHM_SIZE);

} else

printf("segment contains: \"%s\"\n", data);

/* detach from the segment: */

if (shmdt(data) == -1) {

perror("shmdt");

exit(1);

}

return 0;

}

Copyright ©: University of Illinois CS 241 Staff

Message-based IPC

 Message system

 Enables communication without resorting to
shared variables

 To communicate, processes P and Q must

 Establish a communication link between them

 Exchange messages

 Two operations

 send(message)

 receive(message)

Copyright ©: University of Illinois CS 241 Staff

Direct Message Passing

 Processes must name each other explicitly
 send (P, message)

 Send a message to process P

 receive(Q, message)

 Receive a message from process Q

 receive(&id, message)

 Receive a message from any process

 Link properties
 Established automatically

 Associated with exactly one pair of processes

 There exists exactly one link between each pair

 Limitation
 Must know the name or ID of the process(es)

Copyright ©: University of Illinois CS 241 Staff

Indirect Message Passing

 Process names a mailbox (or port)

 Each mailbox has a unique id

 Processes can communicate only if they share a
mailbox

 Link properties

 Established only if processes share a common
mailbox

 May be associated with many processes

 Each pair of processes may share multiple links

 Link may be unidirectional or bi-directional

Copyright ©: University of Illinois CS 241 Staff

Mailbox Ownership

 Process
 Only the owner receives messages through

mailbox

 Other processes only send.

 When process terminates, any “owned”
mailboxes are destroyed.

 System
 Process that creates mailbox owns it (and so

may receive through it) but may transfer
ownership to another process.

Copyright ©: University of Illinois CS 241 Staff

Indirect Message Passing

 Mailboxes are a resource

 Create and Destroy

 Primitives

 send(A, message)

 Send a message to mailbox A

 receive(A, message)

 Receive a message from mailbox A

Copyright ©: University of Illinois CS 241 Staff

Indirect Message Passing

 Mailbox sharing
 P1, P2, and P3 share mailbox A

 P1, sends; P2 and P3 receive

 Who gets the message?

 Options
 Allow a link to be associated with at most two

processes

 Allow only one process at a time to execute a
receive operation

 Allow the system to arbitrarily select the receiver
and notify the sender

Copyright ©: University of Illinois CS 241 Staff

IPC and Synchronization

 Blocking == synchronous
 Blocking send

 Sender blocks until the message is received

 Blocking receive
 Receiver blocks until a message is available

 Non-blocking == asynchronous
 Non-blocking send

 Sender sends the message and continues

 Non-blocking receive
 Receiver receives a valid message or null

Copyright ©: University of Illinois CS 241 Staff

Buffering

 IPC message queues
1. Zero capacity

 No messages may be queued

 Sender must wait for receiver

2. Bounded capacity
 Finite buffer of n messages

 Sender blocks if link is full

3. Unbounded capacity
 Infinite buffer space

 Sender never blocks

Copyright ©: University of Illinois CS 241 Staff

Buffering

 Is a buffer needed?
P1: send(P2, x) P2: receive(P1, x)

receive(P2, y) send(P1, y)

 Is a buffer needed?
P1: send(P2, x) P2: send(P1, x)

receive(P2, y) receive(P1, y)

Copyright ©: University of Illinois CS 241 Staff

Example: Message Passing

void Producer() {

while (TRUE) {

/* produce item */

build_message(&m, item);

send(consumer, &m);

receive(consumer, &m); /* wait for ack */

}

}

void Consumer {

while(TRUE) {

receive(producer, &m);

extract_item(&m, &item);

send(producer, &m); /* ack */

/* consume item */

}

}

Copyright ©: University of Illinois CS 241 Staff

UNIX Pipes

#include <unistd.h>

int pipe(int fildes[2]);

 Creates a message pipe

 Anything can be written to the pipe, and read from the other end

in the order it came in

 OS enforces mutual exclusion: only one process at a time

 Accessed by a file descriptor, like an ordinary file

 Processes sharing the pipe must have same parent in common

 Returns a pair of file descriptors

 fildes[0] is connected to the write end of the pipe

 fildes[1] is connected to the read end of the pipe

Copyright ©: University of Illinois CS 241 Staff

UNIX Pipe Example

#include <stdio.h>

#include <stdlib.h>

#include <errno.h>

#include <sys/types.h>

#include <unistd.h>

int main(void) {

int pfds[2];

char buf[30];

pipe(pfds);

if (!fork()) {

printf(" CHILD: writing to pipe\n");

write(pfds[1], "test", 5);

printf(" CHILD: exiting\n");

exit(0);

} else {

printf("PARENT: reading from pipe\n");

read(pfds[0], buf, 5);

printf("PARENT: read \"%s\"\n", buf);

wait(NULL);

}

return 0;

}

Copyright ©: University of Illinois CS 241 Staff

UNIX Pipe Example: ls | wc -l

#include <stdio.h>

#include <stdlib.h>

#include <unistd.h>

int main(void) {

int pfds[2];

pipe(pfds);

if (!fork()) {

close(1); /* close stdout */

dup(pfds[1]); /* make stdout pfds[1] */

close(pfds[0]); /* don't need this */

execlp("ls", "ls", NULL);

} else {

close(0); /* close stdin */

dup(pfds[0]); /* make stdin pfds[0] */

close(pfds[1]); /* don't need this */

execlp("wc", "wc", "-l", NULL);

}

return 0;

}

Copyright ©: University of Illinois CS 241 Staff

FIFOs

 A pipe disappears when no process has it open

 FIFOs = named pipes

 Special pipes that persist even after all the processes

have closed them

 Actually implemented as a file

#include <sys/types.h>

#include <sys/stat.h>

int status;

...

status = mkfifo("/home/cnd/mod_done",

S_IWUSR | S_IRUSR | S_IRGRP | S_IROTH);

Copyright ©: University of Illinois CS 241 Staff

FIFO Example: Producer-

Consumer

 Producer

 Writes to fifo

 Consumer

 Reads from fifo

 Outputs data to file

 Fifo

 Ensures atomicity of write

Copyright ©: University of Illinois CS 241 Staff

FIFO Example

#include <errno.h>

#include <fcntl.h>

#include <stdio.h>

#include <stdlib.h>

#include <unistd.h>

#include <sys/stat.h>

#include "restart.h"

int main (int argc, char *argv[]) {

int requestfd;

if (argc != 2) { /* name of consumer fifo on the command line */

fprintf(stderr, "Usage: %s fifoname > logfile\n", argv[0]);

return 1;

}

Copyright ©: University of Illinois CS 241 Staff

FIFO Example

/* create a named pipe to handle incoming requests */

if ((mkfifo(argv[1], S_IRWXU | S_IWGRP| S_IWOTH) == -1)

&& (errno != EEXIST)) {

perror("Server failed to create a FIFO");

return 1;

}

/* open a read/write communication endpoint to the pipe */

if ((requestfd = open(argv[1], O_RDWR)) == -1) {

perror("Server failed to open its FIFO");

return 1;

}

/* Write to pipe like you would to a file */

...

}

Copyright ©: University of Illinois CS 241 Staff

Signals

 Why do we need Signals?

 Enable asynchronous events

 Examples of asynchronous events:

 Email message arrives on my machine – mailing agent

(user) process should retrieve it

 Invalid memory access happens – OS should inform

scheduler to remove process from the processor

 Alarm clock goes off – process which sets the alarm

should catch it

Copyright ©: University of Illinois CS 241 Staff

Unix Signals

 Software mechanism that allows one process to
notify another that some event has occurred

 Each signal has a a numeric value
 02, SIGINT: to interrupt a process

 09, SIGKILL: to terminate a process

 Each signal is maintained as a single bit in the
process table entry of the receiving process
 The bit is set when the corresponding signal arrives

 A signal is processed as soon as the process runs in user
mode

Copyright ©: University of Illinois CS 241 Staff

Basic Signal Concepts

 Generation
 When the event that caused the signal occurred

 Delivery
 When a process receives it

 Lifetime
 Interval between generation and delivery

 Pending
 A signal is pending until it is delivered

Copyright ©: University of Illinois CS 241 Staff

Basic Signal Concepts

 Target process

 Catches signal

 Executes signal handler

 May ignore a signal

 Blocked signals

 Processes can temporarily prevent signal
from being delivered

 Signal Mask

 Set of currently blocked signals

Copyright ©: University of Illinois CS 241 Staff

33

How Signals Work

Signal Generated
Process

Signal Handler

Signal delivered

Signal not blocked

Signal Caught by handler

Return from Signal Handler

Process Resumed

Signal

Mask

Signal

Mask

Signal

Mask

Copyright ©: University of Illinois CS 241 Staff

Examples of Required POSIX

Signals

Signal Description default action

SIGABRT process abort implementation dependent

SIGALRM alarm clock abnormal termination

SIGBUS access undefined part of memory

object

implementation dependent

SIGCHLD child terminated, stopped or continued ignore

SIGILL invalid hardware instruction implementation dependent

SIGINT interactive attention signal (usually

ctrl-C)

abnormal termination

SIGKILL terminated (cannot be caught or

ignored)

abnormal termination

34Copyright ©: University of Illinois CS 241 Staff

Examples of Required POSIX

Signals

Signal Description default action

SIGSEGV Invalid memory reference implementation dependent

SIGSTOP Execution stopped stop

SIGTERM termination Abnormal termination

SIGTSTP Terminal stop stop

SIGTTIN Background process attempting

read

stop

SIGTTOU Background process attempting

write

stop

SIGURG High bandwidth data available

on socket

ignore

SIGUSR1 User-defined signal 1 abnormal termination

35Copyright ©: University of Illinois CS 241 Staff

Generating Signals

 Signal names

 Symbolic name starting with SIG

 Defined in signal.h

 Users can generate signals

 e.g., SIGUSR1

 OS generated

 When certain errors occur

 e.g., SIGSEGV – invalid memory reference

 Specific calls generate signals such as alarm

(e.g., SIGALRM)
36Copyright ©: University of Illinois CS 241 Staff

Command Line Generated

Signals

 kill

 A signal to a process from the command line

 kill -l: lists all system signals

 kill [-signal] pid: send a signal to a

process

 Optional argument may be a name or a number

(default is SIGTERM).

 Unconditionally kill a process

 kill -9 pid

 kill -SIGKILL pid.

Copyright ©: University of Illinois CS 241 Staff 37

Command Line Generated

Signals

 CTRL-C = SIGINT

 Interactive attention signal

 CTRL-Z = SIGSTOP

 Execution stopped – cannot be ignored

 CTRL-Y = SIGCONT

 Execution continued if stopped

 CTRL-D = SIGQUIT

 interactive termination: core dump

Copyright ©: University of Illinois CS 241 Staff 38

39

Timers Generate SIGALRM

Signals

 #include <unistd.h>

 unsigned alarm (unsigned seconds);

 alarm(20) creates SIGALRM to calling

process after 20 real time seconds.

 Calls are not stacked

 alarm(0) cancels alarm

Copyright ©: University of Illinois CS 241 Staff

