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Midterm Review
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Syllabus

 Everything up to and including Lecture 
18 (deadlock)

 Main Topics: C, OS, System Calls, 
Processes, Threads, Scheduling, 
Synchronization, Classical 
Synchronization Problems, Deadlock
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Problem 1: Concurrency
Thread A
for (i=0; i<5; i++) {
 x = x + 1;
}
 

Thread B
for (j=0; j<5; j++) {
 x = x + 2;
}

 Assume 
 A single-processor system
 Load and store are atomic 
 x is initialized to 0 before either thread starts
 x must be loaded into a register before being incremented (and 

stored back to memory afterwards)
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Problem 1: Concurrency
Thread A
for (i=0; i<5; i++) {
 x = x + 1;
}
 

Thread B
for (j=0; j<5; j++) {
 x = x + 2;
}

 Why is x ≤ 15 when both threads have completed?
 If the x=... statements are not interleaved, x = 15.
 If they are ever interleaved, this can only cause a 

smaller or equal value.
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Problem 2: Concurrency
Thread A
for (i=0; i<5; i++) {
 x = x + 1;
}
 

Thread B
for (j=0; j<5; j++) {
 x = x + 2;
}

 Give a concise proof why x ≠1 when both threads have 
completed
 Every store into x from either Thread A or B is ≥ 0, and once x 

becomes ≥ 0, it stays ≥ 0.
 The only way for x =1 is for the last x=x+1 statement in 

Thread A to load a zero and store a one. However, there are at 
least four stores from Thread A previous to the load for the last 
statement, meaning that it couldn’t have loaded a zero.
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Problem 3: Concurrency
Thread A
for (i=0; i<5; i++) {
 x = x + 1;
}
 

Thread B

 Suppose we replace ‘x = x + 2’ in Thread B with an 
atomic double increment operation atomicIncr2(x) 
that cannot be preempted while being executed. What 
are all the possible final values of x? Explain.



Copyright ©: University of Illinois CS 241 Staff

Problem 3: Concurrency
Thread A
for (i=0; i<5; i++) {
 x = x + 1;
}
 

Thread B
for (j=0; j<5; j++) {
 atomicIncr2(x);
}

 What are all the possible final values of x? Explain.
 Final values are 5, 7, 9, 11, 13, or 15. 
 The x=x+2 statements can be “erased” by being between the 

load and store of an x=x+1 statement. 
 However, since the x=x+2 statements are atomic, the x=x+1 

statements can never be “erased” because the load and store 
phases of x=x+2 cannot be separated. 

 The final value is at least 5 (from Thread A) with from 0 to 5 
successful updates of x=x+2.
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Problem 4: Context Switching

 What needs to be saved and restored on a context 
switch between two threads in the same process? 
What if the two threads are in different processes? 
 Save the thread’s registers, stack pointer, and program 

counter in the TCB of the swapped out thread
 Reload the same things from the TCB of the new thread
 Different Processes: 

 Save and restore above
 Load the pointer for the address space of the new process
 Don’t need to save the old pointer, since this will not change and is 

already stored in the PCB.
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Problem 5: Threading Pros 
and Cons

 Under what circumstances can a 
multithreaded program complete more 
quickly than a non-multithreaded program? 
Keep in mind that multithreading has 
context-switch overhead associated with it.
 When there is a lot of blocking that may occur 

(such as for I/O) and parts of the program can 
still make progress while other parts are 
blocked.

 When there are multiple cores/processors.
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Problem 6: Bounded Buffer

 Given the three following variations, explain 
whether it is correct or incorrect. 
 If correct, explain any of the advantages and 

disadvantages of the new code. 
 If incorrect, explain what could go wrong (i.e., 

trace through an example where it does not 
behave properly).
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 Suppose coke machine is initially full.
 Suppose a Producer comes and grabs mutex and then 

waits for emptyBuffers. 
 A consumer then waits on mutex -- deadlock! 
 Is there a different way to deadlock?

 Yes: Consumer grabs mutex and waits for fullBuffers.

1
2

Producer () {
 mutex_lock(m);
 sem_wait(emptyBuffers);
 put 1 coke in machine;
 sem_signal(fullBuffers);
 mutex_unlock(m);
}

Consumer () {
 mutex_lock(m);
 sem_wait(fullBuffers);
 take 1 coke from machine;
 sem_signal(emptyBuffers);
 mutex_unlock(m);
}

Problem 6a: Bounded Buffer



Producer () {
 mutex_lock(m);
 sem_wait(emptyBuffers);
 put 1 coke in machine;
 sem_signal(fullBuffers);
 mutex_unlock(m);
}

Consumer () {
 sem_wait(fullBuffers);
 mutex_lock(m);
 take 1 coke from machine;
 sem_signal(emptyBuffers);
 mutex_unlock(m);
}
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 This code is incorrect - it can lead to deadlock. 
 The problem is exactly as the previous example.
 Consider the case where the coke machine is initially full. 

 Suppose a Producer comes and grabs m and 
then waits for emptyBuffers. 

 A consumer then hangs on mutex and no one 
will ever consume a coke to empty a buffer.

1 2

Problem 6b: Bounded Buffer
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 This code is correct. 
 This code allows more concurrency
 Since mutex immediately surrounds both the 

Producer and Consumer actions of putting a coke 
and taking a code from the machine, releasing 
mutex quickly achieves better concurrency

Producer () {
 sem_wait(emptyBuffers);
 mutex_lock(m);
 put 1 coke in machine;
 sem_signal(fullBuffers);
 mutex_unlock(m);
}

Consumer () {
 sem_wait(fullBuffers);
 mutex_lock(m);
 take 1 coke from machine;
 sem_signal(emptyBuffers);
 mutex_unlock(m);
}

Problem 6c: Bounded Buffer
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Problem 7

 Most round-robin schedulers use a 
fixed size quantum. Give an argument 
in favor of a small quantum, and 
another in favor of a larger one. 

 Compare the contrast the types of 
systems and jobs to which the 
arguments apply. 
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Problem 8

 Classify the relation between each of the 
following pairs into either “if one increases, 
the other always increases” or “if one 
decreases, the other always increases” or 
“no such  relation exists always.”

1. Throughput and Waiting Time.
2. Waiting Time and Turnaround Time.
3. Response time and Turnaround Time.
4. Throughout and Turnaround Time.
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Problem 9

 Suppose there are two types of dining 
philosophers. One type always picks up his 
left fork first and the other type always picks 
up his right fork first – call these a lefty and 
a righty. Each type executes consecutive 
“wait”s on their forks (left followed by right 
for lefties, and the other way around for 
righties), eats, then does “signal”s on the 
forks in reverse order of the waits (right 
followed by left for lefties, and the other way 
around for the righties).
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Problem 9 (continued)

 Does every seating arrangement of 
lefties and righties with at least one of 
each avoid deadlock? Why? 

 Does it prevent starvation? Why?
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Problem 10

 Some Linux atomic operations do not 
involve two accesses to a variable, 
such as atomic_read(atomic_t *v). A 
simple read operation is obviously 
atomic in any architecture. Therefore, 
why is this operation added to the 
repertoire of atomic operations?
 It’s not simple.  Reading one variable 

may involve multiple reads in the physical 
memory.
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Problem 11

You are designing a data structure for efficient dictionary lookup in a 
multithreaded application. The design uses a hash table that consists 
of an array of pointers each corresponding to a hash bin. The array 
has 1001 elements, and a hash function takes an item to be 
searched and computes an entry between 0 and 1000. The pointer at 
the computed entry is either null, in which case the item is not found, 
or it points to a doubly linked list of items that you would search 
sequentially to see if any of them matches the item you are searching 
for. There are three functions defined on the hash table: Insertion (if 
an item is not there already), Lookup (to see if an item is there), and 
deletion (to remove an item from the table). Considering the need for 
synchronization, would you: 

1. Use a mutex over the entire table? 
2. Use a mutex over each hash bin? 
3. Use a mutex over each hash bin and a mutex over each element in 

the doubly linked list? 
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Problem 12

You are asked to implement a one-shot barrier for N threads. Each thread 
executes code of the following manner: 

Barrier *b;
…
Arriveatbarrier(b);

Basically each of the first N-1 thread to call Arriveatbarrier(b) will block 
until the last (Nth) thread has arrived there. Once that happens, all 
threads will be released simultaneously to proceed.

One-shot means this code will be executed exactly once by each thread.

1. Write an implementation using semaphores and mutexes.
2. Does your solution work if the barrier is reused multiple times by 

threads (i.e., it is not a one-shot barrier)? 
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Problem 13

 Implement semaphore wait and 
semaphore signal functions using the 
test and set lock primitive.
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Problem 14

 You are given an XCHG (exchange) 
hardware instruction that atomically 
exchanges two memory addresses. 
Implement a test and set lock using 
the XCHG primitive.
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Problem 15:  producer-
consumer without semaphores

 Let’s solve it with mutexes + condition 
variables instead!

 First, what was the semaphore-based 
solution we saw?
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Recall Producer-Consumer
 Chefs cook items and put them on a 

conveyer belt
 Customers pick items off the belt

corn clip art credit:
wikimedia User:Spedona
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Solution

 Prevent overflow: block producer when full! 
Counting semaphore to count #free slots 
 0  block producer

 Prevent underflow: block consumer when 
empty! Counting semaphore to count #items 
in buffer 
 0  block consumer

 Mutex to protect accesses to shared buffer & 
pointers.



Copyright ©: University of Illinois CS 241 Staff

Pseudocode getItem()

 For consumer
 Error checking/EINTR handling not shown

sem_wait(items);
mutex_lock(mutex);
result = buffer[ removePtr ];
removePtr = (removePtr +1) % N;
mutex_unlock(mutex);
sem_signal(slots);
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Pseudocode putItem(data)

 For producer
 Error checking/EINTR handling not shown

sem_wait(slots);
mutex_lock(mutex);
buffer[ insertPtr ] = data;
insertPtr = (insertPtr + 1) % N;
mutex_unlock(mutex);
sem_signal(items);
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And now, without semaphores
Shared:
int buf_size;
element_t buffer[n];
cond_t not_full;
cond_t not_empty;
mutex m;

Reader:
while (1) {
  lock(m);
  while (buf_size == 0)
    cond_wait(not_empty, m);
  grab_element(buffer);
  buf_size--;
  cond_signal(not_full);
  unlock(m);
}

Writer:
while (1) {
  lock(m);
  while (buf_size == n)
    cond_wait(not_full, m);
  put_element(buffer);
  buf_size++;
  cond_signal(not_empty);
  unlock(m);
}

What if we swapped 
these two lines?
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Homework 2 Question 2: 
Balanced ternary tree

fork() fork() fork()

fork() ...
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A solution
 create_ternary_tree_of_depth(int N) { 

int i; 
for (i = 1; i < N; i++) 

if (fork())
if (fork())

if (fork())
break; 

}
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