
Copyright ©: University of Illinois CS 241 Staff 1

Midterm Review

Copyright ©: University of Illinois CS 241 Staff 2

Syllabus

 Everything up to and including Lecture
18 (deadlock)

 Main Topics: C, OS, System Calls,
Processes, Threads, Scheduling,
Synchronization, Classical
Synchronization Problems, Deadlock

Copyright ©: University of Illinois CS 241 Staff

Problem 1: Concurrency
Thread A
for (i=0; i<5; i++) {
 x = x + 1;
}

Thread B
for (j=0; j<5; j++) {
 x = x + 2;
}

 Assume
 A single-processor system
 Load and store are atomic
 x is initialized to 0 before either thread starts
 x must be loaded into a register before being incremented (and

stored back to memory afterwards)

Copyright ©: University of Illinois CS 241 Staff

Problem 1: Concurrency
Thread A
for (i=0; i<5; i++) {
 x = x + 1;
}

Thread B
for (j=0; j<5; j++) {
 x = x + 2;
}

 Why is x ≤ 15 when both threads have completed?
 If the x=... statements are not interleaved, x = 15.
 If they are ever interleaved, this can only cause a

smaller or equal value.

Copyright ©: University of Illinois CS 241 Staff

Problem 2: Concurrency
Thread A
for (i=0; i<5; i++) {
 x = x + 1;
}

Thread B
for (j=0; j<5; j++) {
 x = x + 2;
}

 Give a concise proof why x ≠1 when both threads have
completed
 Every store into x from either Thread A or B is ≥ 0, and once x

becomes ≥ 0, it stays ≥ 0.
 The only way for x =1 is for the last x=x+1 statement in

Thread A to load a zero and store a one. However, there are at
least four stores from Thread A previous to the load for the last
statement, meaning that it couldn’t have loaded a zero.

Copyright ©: University of Illinois CS 241 Staff

Problem 3: Concurrency
Thread A
for (i=0; i<5; i++) {
 x = x + 1;
}

Thread B

 Suppose we replace ‘x = x + 2’ in Thread B with an
atomic double increment operation atomicIncr2(x)
that cannot be preempted while being executed. What
are all the possible final values of x? Explain.

Copyright ©: University of Illinois CS 241 Staff

Problem 3: Concurrency
Thread A
for (i=0; i<5; i++) {
 x = x + 1;
}

Thread B
for (j=0; j<5; j++) {
 atomicIncr2(x);
}

 What are all the possible final values of x? Explain.
 Final values are 5, 7, 9, 11, 13, or 15.
 The x=x+2 statements can be “erased” by being between the

load and store of an x=x+1 statement.
 However, since the x=x+2 statements are atomic, the x=x+1

statements can never be “erased” because the load and store
phases of x=x+2 cannot be separated.

 The final value is at least 5 (from Thread A) with from 0 to 5
successful updates of x=x+2.

Copyright ©: University of Illinois CS 241 Staff

Problem 4: Context Switching

 What needs to be saved and restored on a context
switch between two threads in the same process?
What if the two threads are in different processes?
 Save the thread’s registers, stack pointer, and program

counter in the TCB of the swapped out thread
 Reload the same things from the TCB of the new thread
 Different Processes:

 Save and restore above
 Load the pointer for the address space of the new process
 Don’t need to save the old pointer, since this will not change and is

already stored in the PCB.

Copyright ©: University of Illinois CS 241 Staff

Problem 5: Threading Pros
and Cons

 Under what circumstances can a
multithreaded program complete more
quickly than a non-multithreaded program?
Keep in mind that multithreading has
context-switch overhead associated with it.
 When there is a lot of blocking that may occur

(such as for I/O) and parts of the program can
still make progress while other parts are
blocked.

 When there are multiple cores/processors.

Copyright ©: University of Illinois CS 241 Staff

Problem 6: Bounded Buffer

 Given the three following variations, explain
whether it is correct or incorrect.
 If correct, explain any of the advantages and

disadvantages of the new code.
 If incorrect, explain what could go wrong (i.e.,

trace through an example where it does not
behave properly).

Copyright ©: University of Illinois CS 241 Staff

 Suppose coke machine is initially full.
 Suppose a Producer comes and grabs mutex and then

waits for emptyBuffers.
 A consumer then waits on mutex -- deadlock!
 Is there a different way to deadlock?

 Yes: Consumer grabs mutex and waits for fullBuffers.

1
2

Producer () {
 mutex_lock(m);
 sem_wait(emptyBuffers);
 put 1 coke in machine;
 sem_signal(fullBuffers);
 mutex_unlock(m);
}

Consumer () {
 mutex_lock(m);
 sem_wait(fullBuffers);
 take 1 coke from machine;
 sem_signal(emptyBuffers);
 mutex_unlock(m);
}

Problem 6a: Bounded Buffer

Producer () {
 mutex_lock(m);
 sem_wait(emptyBuffers);
 put 1 coke in machine;
 sem_signal(fullBuffers);
 mutex_unlock(m);
}

Consumer () {
 sem_wait(fullBuffers);
 mutex_lock(m);
 take 1 coke from machine;
 sem_signal(emptyBuffers);
 mutex_unlock(m);
}

Copyright ©: University of Illinois CS 241 Staff

 This code is incorrect - it can lead to deadlock.
 The problem is exactly as the previous example.
 Consider the case where the coke machine is initially full.

 Suppose a Producer comes and grabs m and
then waits for emptyBuffers.

 A consumer then hangs on mutex and no one
will ever consume a coke to empty a buffer.

1 2

Problem 6b: Bounded Buffer

Copyright ©: University of Illinois CS 241 Staff

 This code is correct.
 This code allows more concurrency
 Since mutex immediately surrounds both the

Producer and Consumer actions of putting a coke
and taking a code from the machine, releasing
mutex quickly achieves better concurrency

Producer () {
 sem_wait(emptyBuffers);
 mutex_lock(m);
 put 1 coke in machine;
 sem_signal(fullBuffers);
 mutex_unlock(m);
}

Consumer () {
 sem_wait(fullBuffers);
 mutex_lock(m);
 take 1 coke from machine;
 sem_signal(emptyBuffers);
 mutex_unlock(m);
}

Problem 6c: Bounded Buffer

Copyright ©: University of Illinois CS 241 Staff 21

Problem 7

 Most round-robin schedulers use a
fixed size quantum. Give an argument
in favor of a small quantum, and
another in favor of a larger one.

 Compare the contrast the types of
systems and jobs to which the
arguments apply.

Copyright ©: University of Illinois CS 241 Staff 23

Problem 8

 Classify the relation between each of the
following pairs into either “if one increases,
the other always increases” or “if one
decreases, the other always increases” or
“no such relation exists always.”

1. Throughput and Waiting Time.
2. Waiting Time and Turnaround Time.
3. Response time and Turnaround Time.
4. Throughout and Turnaround Time.

Copyright ©: University of Illinois CS 241 Staff 24

Problem 9

 Suppose there are two types of dining
philosophers. One type always picks up his
left fork first and the other type always picks
up his right fork first – call these a lefty and
a righty. Each type executes consecutive
“wait”s on their forks (left followed by right
for lefties, and the other way around for
righties), eats, then does “signal”s on the
forks in reverse order of the waits (right
followed by left for lefties, and the other way
around for the righties).

Copyright ©: University of Illinois CS 241 Staff 25

Problem 9 (continued)

 Does every seating arrangement of
lefties and righties with at least one of
each avoid deadlock? Why?

 Does it prevent starvation? Why?

Copyright ©: University of Illinois CS 241 Staff 26

Problem 10

 Some Linux atomic operations do not
involve two accesses to a variable,
such as atomic_read(atomic_t *v). A
simple read operation is obviously
atomic in any architecture. Therefore,
why is this operation added to the
repertoire of atomic operations?
 It’s not simple. Reading one variable

may involve multiple reads in the physical
memory.

Copyright ©: University of Illinois CS 241 Staff 27

Problem 11

You are designing a data structure for efficient dictionary lookup in a
multithreaded application. The design uses a hash table that consists
of an array of pointers each corresponding to a hash bin. The array
has 1001 elements, and a hash function takes an item to be
searched and computes an entry between 0 and 1000. The pointer at
the computed entry is either null, in which case the item is not found,
or it points to a doubly linked list of items that you would search
sequentially to see if any of them matches the item you are searching
for. There are three functions defined on the hash table: Insertion (if
an item is not there already), Lookup (to see if an item is there), and
deletion (to remove an item from the table). Considering the need for
synchronization, would you:

1. Use a mutex over the entire table?
2. Use a mutex over each hash bin?
3. Use a mutex over each hash bin and a mutex over each element in

the doubly linked list?

Copyright ©: University of Illinois CS 241 Staff 28

Problem 12

You are asked to implement a one-shot barrier for N threads. Each thread
executes code of the following manner:

Barrier *b;
…
Arriveatbarrier(b);

Basically each of the first N-1 thread to call Arriveatbarrier(b) will block
until the last (Nth) thread has arrived there. Once that happens, all
threads will be released simultaneously to proceed.

One-shot means this code will be executed exactly once by each thread.

1. Write an implementation using semaphores and mutexes.
2. Does your solution work if the barrier is reused multiple times by

threads (i.e., it is not a one-shot barrier)?

Copyright ©: University of Illinois CS 241 Staff 30

Problem 13

 Implement semaphore wait and
semaphore signal functions using the
test and set lock primitive.

Copyright ©: University of Illinois CS 241 Staff 31

Problem 14

 You are given an XCHG (exchange)
hardware instruction that atomically
exchanges two memory addresses.
Implement a test and set lock using
the XCHG primitive.

Copyright ©: University of Illinois CS 241 Staff

Problem 15: producer-
consumer without semaphores

 Let’s solve it with mutexes + condition
variables instead!

 First, what was the semaphore-based
solution we saw?

Copyright ©: University of Illinois CS 241 Staff

Recall Producer-Consumer
 Chefs cook items and put them on a

conveyer belt
 Customers pick items off the belt

corn clip art credit:
wikimedia User:Spedona

Copyright ©: University of Illinois CS 241 Staff

Solution

 Prevent overflow: block producer when full!
Counting semaphore to count #free slots
 0  block producer

 Prevent underflow: block consumer when
empty! Counting semaphore to count #items
in buffer
 0  block consumer

 Mutex to protect accesses to shared buffer &
pointers.

Copyright ©: University of Illinois CS 241 Staff

Pseudocode getItem()

 For consumer
 Error checking/EINTR handling not shown

sem_wait(items);
mutex_lock(mutex);
result = buffer[removePtr];
removePtr = (removePtr +1) % N;
mutex_unlock(mutex);
sem_signal(slots);

Copyright ©: University of Illinois CS 241 Staff

Pseudocode putItem(data)

 For producer
 Error checking/EINTR handling not shown

sem_wait(slots);
mutex_lock(mutex);
buffer[insertPtr] = data;
insertPtr = (insertPtr + 1) % N;
mutex_unlock(mutex);
sem_signal(items);

Copyright ©: University of Illinois CS 241 Staff

And now, without semaphores
Shared:
int buf_size;
element_t buffer[n];
cond_t not_full;
cond_t not_empty;
mutex m;

Reader:
while (1) {
 lock(m);
 while (buf_size == 0)
 cond_wait(not_empty, m);
 grab_element(buffer);
 buf_size--;
 cond_signal(not_full);
 unlock(m);
}

Writer:
while (1) {
 lock(m);
 while (buf_size == n)
 cond_wait(not_full, m);
 put_element(buffer);
 buf_size++;
 cond_signal(not_empty);
 unlock(m);
}

What if we swapped
these two lines?

Copyright ©: University of Illinois CS 241 Staff

Homework 2 Question 2:
Balanced ternary tree

fork() fork() fork()

fork() ...

Copyright ©: University of Illinois CS 241 Staff

A solution
 create_ternary_tree_of_depth(int N) {

int i;
for (i = 1; i < N; i++)

if (fork())
if (fork())

if (fork())
break;

}

P

X

X X X

C

