
Copyright ©: University of Illinois CS 241 Staff 1 1

Deadlocks

Copyright ©: University of Illinois CS 241 Staff

Upcoming schedule

 Deadlock avoidance
 Homework 2 solutions (if time)

 Friday: Midterm review
 Monday: Midterm

2

Copyright ©: University of Illinois CS 241 Staff 3

How to deal with deadlocks

 The default
 The “ostrich solution”

 Prevention
 design a system in such a way that deadlocks cannot occur, at least

with respect to serially reusable resources.
 Detection

 in a system that allows the possibility of deadlock, determine if deadlock
has occurred, and which processes and resources are involved.

 Recovery
 after a deadlock has been detected, clear the problem, allowing the

deadlocked processes to complete and the resources to be reused.
Usually involves destroying (at least one of) the affected processes and
starting them over.

 Avoidance
 impose less stringent conditions than for prevention, allowing the

possibility of deadlock, but sidestepping it as it approaches.

Copyright ©: University of Illinois CS 241 Staff 4

Deadlock Avoidance
 Each resource has multiple instances
 Resource = mutex lock, memory, disk, ...
 The system needs to know the maximum

resource requirements of each process
ahead of time
 Process p specifies, for each resource

i, p.Max[i] = maximum number of
instances of i that p can request

 This information will allow us to avoid
deadlock.

Copyright ©: University of Illinois CS 241 Staff

Avoiding deadlock with the
Banker’s Algorithm

 Before starting, each customer tells
banker the maximum number of
resources it needs

 Customer borrows resources from
banker

 Customer returns resources to banker
 Banker only lends if the system will

stay in a safe state after the loan
5

[Dijkstra 1965; Habermann 1969]

Copyright ©: University of Illinois CS 241 Staff 6

Safe State and Unsafe State
 Safe State

 Can guarantee: there is some scheduling order
in which every process can run to completion
regardless of how they request their resources

 From safe state, the system can guarantee that
all processes will finish

 Unsafe state: no such guarantee

All states

Safe
Unsafe

Deadlocked

Copyright ©: University of Illinois CS 241 Staff

In other words...

 Safe means there is a way for the
programs to finish executing without
deadlocking.

 Our goal: guide the system down one
of those paths successfully.

7

Copyright ©: University of Illinois CS 241 Staff

How to guide the system down
a safe path of execution

 Subroutine: is a given state safe?
 When a resource allocation request

arrives,
 Pretend that we approve the request.

Would we then be safe? (use subroutine)
 If so, approve request
 Otherwise, block process until its request

can be safely approved

8

Copyright ©: University of Illinois CS 241 Staff

Subroutine: is a state safe?
 What is a “state”? For each resource,

 Current amount available
 Current amount allocated to each process
 Future amount needed by each process

9

Memory GPU
Free

P1 alloc

P2 alloc

P1 need

P2 need

Copyright ©: University of Illinois CS 241 Staff

Subroutine: is a state safe?

10

 Safe = there is an execution order which can finish
 Pessimistic assumption: processes never release

resources until they’re done
 State is safe when there is an ordering of processes

P1, P2, ..., Pn such that for all processes i and
resources j,

need(i, j) ≤ free(i, j) +
∑

k<i

alloc(k, j)

Copyright ©: University of Illinois CS 241 Staff

Subroutine: is a state safe?

11

 Safe = there is an execution order which can finish
 i.e, there is an ordering of processes P1, P2, ..., Pn

such that for all processes i and resources j,
 P1 can finish using what it has plus what’s free
 P2 can finish using what it has plus what’s free,

plus what P1 will release when it finishes
 P3 can finish using what it has, plus what’s free,

plus what P1 and P2 will release when they
finish

 ...

How do we figure that out? Try all orderings?

Copyright ©: University of Illinois CS 241 Staff

Inspiration...

12

Copyright ©: University of Illinois CS 241 Staff

Playing pickup sticks
with processes

 Find some process that can finish with
what it has plus what’s free

 Imagine that the process finishes and
releases its resources.

 Repeat until all processes have
finished (answer: safe) or we get stuck
(answer: unsafe).

13

Copyright ©: University of Illinois CS 241 Staff

Try it: is this state safe?

14

P2 alloc

Memory GPU
Free

P2 need

P1 alloc

P1 need

Copyright ©: University of Illinois CS 241 Staff

Try it: is this state safe?

15

P2 alloc

Memory GPU
Free

P2 need

P1 alloc

P1 need

Copyright ©: University of Illinois CS 241 Staff

Try it: is this state safe?

16

P2 alloc

Memory GPU
Free

P2 need

P1 alloc

P1 need

Yes, it’s safe: Order is P2, P1

Copyright ©: University of Illinois CS 241 Staff

Example 2: Is this state safe?

17

P2 alloc

Memory
Free

P2 need

P1 alloc

P1 need

P3 alloc

P3 need

Copyright ©: University of Illinois CS 241 Staff

Example 2: Is this state safe?

18

P2 alloc

Memory
Free

P2 need

P1 alloc

P1 need

P3 alloc

P3 need

Unsafe!

Copyright ©: University of Illinois CS 241 Staff

How to guide the system down
a safe path of execution

 Subroutine: is a given state safe?
 When a resource allocation request

arrives,
 Pretend that we approve the request.

Would we then be safe? (use subroutine)
 If so, approve request
 Otherwise, block process until its request

can be safely approved

19

Copyright ©: University of Illinois CS 241 Staff

Banker’s algorithm example

20

For each request,
• If we approved it,

would we still be
safe?

• If so, approve
• If not, block P2 alloc

Memory
Free

P2 need

P1 alloc

P1 need

Disk

RR equest

Copyright ©: University of Illinois CS 241 Staff

Banker’s algorithm example

21

For each request,
• If we approved it,

would we still be
safe?

• If so, approve
• If not, block P2 alloc

Memory
Free

P2 need

P1 alloc

P1 need

Disk

R

Copyright ©: University of Illinois CS 241 Staff

Banker’s algorithm example

22

For each request,
• If we approved it,

would we still be
safe?

• If so, approve
• If not, block P2 alloc

Memory
Free

P2 need

P1 alloc

P1 need

Disk

R

Copyright ©: University of Illinois CS 241 Staff

Banker’s algorithm example

23

For each request,
• If we approved it,

would we still be
safe?

• If so, approve
• If not, block P2 alloc

Memory
Free

P2 need

P1 alloc

P1 need

Disk

B locked!

Copyright ©: University of Illinois CS 241 Staff

Banker’s algorithm example

24

For each request,
• If we approved it,

would we still be
safe?

• If so, approve
• If not, block P2 alloc

Memory
Free

P2 need

P1 alloc

P1 need

Disk

B locked!

R

Copyright ©: University of Illinois CS 241 Staff

Banker’s algorithm example

25

For each request,
• If we approved it,

would we still be
safe?

• If so, approve
• If not, block P2 alloc

Memory
Free

P2 need

P1 alloc

P1 need

Disk

B locked!

Copyright ©: University of Illinois CS 241 Staff

Banker’s algorithm example

26

For each request,
• If we approved it,

would we still be
safe?

• If so, approve
• If not, block P2 alloc

Memory
Free

P2 need

P1 alloc

P1 need

Disk

B locked!

Copyright ©: University of Illinois CS 241 Staff

Banker’s algorithm example

27

For each request,
• If we approved it,

would we still be
safe?

• If so, approve
• If not, block P2 alloc

Memory
Free

P2 need

P1 alloc

P1 need

Disk

Copyright ©: University of Illinois CS 241 Staff

Banker’s algorithm example 2

28

mutex m1, m2;
int x, y;

Two processes doing this:
while (1) {

lock(m1); x++; unlock(m1);
lock(m2); y++; unlock(m2);

}

m1
Free

P2 alloc

P2 need

P1 alloc

P1 need

While P1 locks m1, P2
can’t lock m2!
What did Banker’s
algorithm get wrong?

Pessimistic assumption:
processes never
release resources until
they’re done!

m2

R

R

Copyright ©: University of Illinois CS 241 Staff 29

All states

Safe
Unsafe

Deadlocked

Banker’s algorithm example 2

Copyright ©: University of Illinois CS 241 Staff 30

Concluding notes
 In general, deadlock detection or avoidance is

expensive
 Must evaluate cost and frequency of deadlock

against costs of detection or avoidance
 Deadlock avoidance and recovery may cause

indefinite postponement
 Unix, Windows use Ostrich Algorithm (do nothing)
 Typical apps use deadlock prevention (order locks)
 Transaction systems (e.g., credit card systems)

need to use deadlock detection/recovery/
avoidance/prevention (why?)

Copyright ©: University of Illinois CS 241 Staff

Homework 2

31

Copyright ©: University of Illinois CS 241 Staff

Question 2: Balanced ternary
tree of depth N

32

fork() fork() fork()

fork() ...

Copyright ©: University of Illinois CS 241 Staff

A solution

33

 create_ternary_tree_of_depth(int N) {
int i;
for (i = 1; i < N; i++)

if (fork())
if (fork())

if (fork())
break;

}

P

X

X X X

C

