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Deadlocks
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Upcoming schedule

 Deadlock avoidance
 Homework 2 solutions (if time)

 Friday: Midterm review
 Monday: Midterm
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How to deal with deadlocks

 The default
 The “ostrich solution”

 Prevention
 design a system in such a way that deadlocks cannot occur, at least 

with respect to serially reusable resources. 
 Detection

 in a system that allows the possibility of deadlock, determine if deadlock 
has occurred, and which processes and resources are involved. 

 Recovery
 after a deadlock has been detected, clear the problem, allowing the 

deadlocked processes to complete and the resources to be reused. 
Usually involves destroying (at least one of) the affected processes and 
starting them over. 

 Avoidance
 impose less stringent conditions than for prevention, allowing the 

possibility of deadlock, but sidestepping it as it approaches. 
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Deadlock Avoidance
 Each resource has multiple instances
 Resource = mutex lock, memory, disk, ...
 The system needs to know the maximum 

resource requirements of each process 
ahead of time
 Process p specifies, for each resource 

i,  p.Max[i] = maximum number of 
instances of i that p can request

 This information will allow us to avoid 
deadlock.
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Avoiding deadlock with the 
Banker’s Algorithm

 Before starting, each customer tells 
banker the maximum number of 
resources it needs

 Customer borrows resources from 
banker 

 Customer returns resources to banker  
 Banker only lends if the system will 

stay in a safe state after the loan
5

[Dijkstra 1965; Habermann 1969]
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Safe State and Unsafe State
 Safe State

 Can guarantee: there is some scheduling order 
in which every process can run to completion 
regardless of how they request their resources 

 From safe state, the system can guarantee that 
all processes will finish

 Unsafe state: no such guarantee

All states

Safe
Unsafe

Deadlocked
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In other words...

 Safe means there is a way for the 
programs to finish executing without 
deadlocking.

 Our goal: guide the system down one 
of those paths successfully.
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How to guide the system down 
a safe path of execution

 Subroutine: is a given state safe?
 When a resource allocation request 

arrives,
 Pretend that we approve the request. 

Would we then be safe? (use subroutine)
 If so, approve request
 Otherwise, block process until its request 

can be safely approved

8



Copyright ©: University of Illinois CS 241 Staff

Subroutine: is a state safe?
 What is a “state”? For each resource,

 Current amount available
 Current amount allocated to each process
 Future amount needed by each process

9

Memory GPU
Free

P1 alloc

P2 alloc

P1 need

P2 need
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Subroutine: is a state safe?
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 Safe = there is an execution order which can finish
 Pessimistic assumption: processes never release 

resources until they’re done
 State is safe when there is an ordering of processes 

P1, P2, ..., Pn such that for all processes i and 
resources j,

need(i, j) ≤ free(i, j) +
∑

k<i

alloc(k, j)
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Subroutine: is a state safe?
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 Safe = there is an execution order which can finish
 i.e, there is an ordering of processes P1, P2, ..., Pn 

such that for all processes i and resources j,
 P1 can finish using what it has plus what’s free
 P2 can finish using what it has plus what’s free, 

plus what P1 will release when it finishes
 P3 can finish using what it has, plus what’s free,  

plus what P1 and P2 will release when they 
finish

 ...

How do we figure that out?  Try all orderings?
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Inspiration...

12



Copyright ©: University of Illinois CS 241 Staff

Playing pickup sticks
with processes

 Find some process that can finish with 
what it has plus what’s free

 Imagine that the process finishes and 
releases its resources.

 Repeat until all processes have 
finished (answer: safe) or we get stuck 
(answer: unsafe).

13
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Try it: is this state safe?
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P2 alloc

Memory GPU
Free

P2 need

P1 alloc

P1 need
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Try it: is this state safe?
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P2 alloc

Memory GPU
Free

P2 need

P1 alloc

P1 need
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Try it: is this state safe?
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P2 alloc

Memory GPU
Free

P2 need

P1 alloc

P1 need

Yes, it’s safe:  Order is P2, P1
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Example 2: Is this state safe?
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P2 alloc

Memory
Free

P2 need

P1 alloc

P1 need

P3 alloc

P3 need



Copyright ©: University of Illinois CS 241 Staff

Example 2: Is this state safe?
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P2 alloc

Memory
Free

P2 need

P1 alloc

P1 need

P3 alloc

P3 need

Unsafe!
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How to guide the system down 
a safe path of execution

 Subroutine: is a given state safe?
 When a resource allocation request 

arrives,
 Pretend that we approve the request. 

Would we then be safe? (use subroutine)
 If so, approve request
 Otherwise, block process until its request 

can be safely approved

19



Copyright ©: University of Illinois CS 241 Staff

Banker’s algorithm example
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For each request,
• If we approved it, 

would we still be 
safe?

• If so, approve
• If not, block P2 alloc

Memory
Free

P2 need

P1 alloc

P1 need

Disk

RR equest
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Banker’s algorithm example
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For each request,
• If we approved it, 

would we still be 
safe?

• If so, approve
• If not, block P2 alloc

Memory
Free

P2 need

P1 alloc

P1 need

Disk

R
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Banker’s algorithm example
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For each request,
• If we approved it, 

would we still be 
safe?

• If so, approve
• If not, block P2 alloc

Memory
Free

P2 need

P1 alloc

P1 need

Disk

R
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Banker’s algorithm example
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For each request,
• If we approved it, 

would we still be 
safe?

• If so, approve
• If not, block P2 alloc

Memory
Free

P2 need

P1 alloc

P1 need

Disk

B locked!
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Banker’s algorithm example
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For each request,
• If we approved it, 

would we still be 
safe?

• If so, approve
• If not, block P2 alloc

Memory
Free

P2 need

P1 alloc

P1 need

Disk

B locked!

R
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Banker’s algorithm example

25

For each request,
• If we approved it, 

would we still be 
safe?

• If so, approve
• If not, block P2 alloc

Memory
Free

P2 need

P1 alloc

P1 need

Disk

B locked!
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Banker’s algorithm example
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For each request,
• If we approved it, 

would we still be 
safe?

• If so, approve
• If not, block P2 alloc

Memory
Free

P2 need

P1 alloc

P1 need

Disk

B locked!
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Banker’s algorithm example

27

For each request,
• If we approved it, 

would we still be 
safe?

• If so, approve
• If not, block P2 alloc

Memory
Free

P2 need

P1 alloc

P1 need

Disk
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Banker’s algorithm example 2
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mutex m1, m2;
int x, y;

Two processes doing this:
while (1) {

lock(m1); x++; unlock(m1);
lock(m2); y++; unlock(m2);

}

m1
Free

P2 alloc

P2 need

P1 alloc

P1 need

While P1 locks m1, P2 
can’t lock m2!
What did Banker’s 
algorithm get wrong?

Pessimistic assumption: 
processes never 
release resources until 
they’re done!

m2

R

R
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All states

Safe
Unsafe

Deadlocked

Banker’s algorithm example 2
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Concluding notes
 In general, deadlock detection or avoidance is 

expensive
 Must evaluate cost and frequency of deadlock 

against costs of detection or avoidance
 Deadlock avoidance and recovery may cause 

indefinite postponement 
 Unix, Windows use Ostrich Algorithm (do nothing)
 Typical apps use deadlock prevention (order locks)
 Transaction systems (e.g., credit card systems) 

need to use deadlock detection/recovery/
avoidance/prevention (why?)



Copyright ©: University of Illinois CS 241 Staff

Homework 2
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Question 2: Balanced ternary 
tree of depth N
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fork() fork() fork()

fork() ...
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A solution

33

 create_ternary_tree_of_depth(int N) { 
int i; 
for (i = 1; i < N; i++) 

if (fork())
if (fork())

if (fork())
break; 

}

P

X

X X X

C


