Deadlocks

Copyright ©: University of Illinois CS 241 Staff



[Deadlock ]

-

E
3




Deadlock Definition

A process is If it is waiting for an event
that will never occur.

Typically, but not necessarily, more than one
process will be involved together in a deadlock

|s deadlock the same as starvation (i.e.,
indefinitely postponed)?

A process is indefinitely postponed if it is
delayed repeatedly over a long period of time
while the attention of the system is given to other
processes. (Logically the process may proceed
but the system never gives it the CPU.)

Copyright ©: University of Illinois CS 241 Staff 3



Necessary Conditions for Deadlock

Mutual exclusion
Processes claim control of the resources they require

Hold-and-wait (a.k.a. wait-for) condition

Processes hold resources already allocated to them while waiting for
additional resources

No preemption condition

Resources cannot be removed from the processes holding them until
used to completion

Circular wait condition

A of processes exists in which each process holds one
or more resources that are requested by the next process in the chain

Copyright ©: University of lllinois CS 241 Staff 4




[Dining Philosophers had it all

Mutual exclusion: Exclusive use of
chopsticks

Hold and wait: Hold 1 chopstick, wait
for next

No preemption: Cannot force another
philosopher to undo their hold

Circular wait: Each waits for next
neighbor to put down chopstick

Copyright ©: University of Illinois CS 241 Staff 5



Formalizing circular walit:
The resource allocation graph

Nodes
Processes
Resources

Arcs

From resource to process = resource assigned to
process

From process to resource = process requests
(and is waiting for) resource

Copyright ©: University of lllinois CS 241 Staff 6




Formalizing circular walit:
The resource allocation graph

® f P

assign request

5 e o

(@) (b)

resource R assigned to process A
process B is requesting/waiting for resource S
process C and D are in deadlock over resources

Tand U
Copyright ©: University of lllinois CS 241 Staff 7 I




Dining Philosophers
resource allocation graph

If we use the trivial broken
“solution”...

void philosopher(i) {
while true {
take left fork;
take right fork;
eat();
put left fork;
put right fork;

bocistorte
Copyright ©: University of Illinois CS 241 Staff



Dining Philosophers
resource allocation graph

If we use the trivial broken
“solution”...

One node per philosopher
and per fork

1. Everyone tries to pick up
left fork (request edges)

z\

Descaxres

bocistorte
Copyright ©: University of Illinois CS 241 Staff



Dining Philosophers
resource allocation graph

If we use the trivial broken
“solution”...

One node per philosopher
and per fork

1. Everyone tries to pick up
left fork (request edges)

2. Everyone succeeds!
(request edges become
assignment edges)

3. Everyone tries to pick up
right fork (request edges)

4. Cycle => deadlock

bocistorte
Copyright ©: University of Illinois CS 241 Staff



[Summary so far

Definition of deadlock

4 conditions for deadlock to happen
Mutual exclusion
Hold-and-wait
No preemption
Circular wait
= cycle in resource allocation graph

Next: How to deal with deadlock

Copyright ©: University of Illinois CS 241 Staff "



How to deal with deadlocks

The default
The “ostrich solution”

Prevention

design a system in such a way that deadlocks cannot occur, at least
with respect to serially reusable resources.

Detection

in a system that allows the possibility of deadlock, determine if deadlock
has occurred, and which processes and resources are involved.

Recovery

after a deadlock has been detected, clear the problem, allowing the
deadlocked processes to complete and the resources to be reused.

Usually involves destroying (at least one of) the affected processes and
starting them over.

Avoidance

impose less stringent conditions than for prevention, allowing the

possibility of deadlcggpbrﬁght%g:tugivgrseit%ﬁ mgsiggzj;t as it approaches.




[The Default:Ostrich solution

Do nothing! Deadlocked
processes just stay stuck.

Rationale: Make the common
path faster and more reliable

Deadlock prevention, avoidance or
detection/recovery algorithms are
expensive

If deadlock occurs only rarely, it is
not worth the overhead to

iImplement any of these algorithms.

Copyright ©: University of Illinois CS 241 Staff 13



Deadlock Prevention

Build the system so as to break one of the deadlock
conditions.

Mutual exclusion
Solution: Allow multiple processes to access CS. E.g., reading a file.

Hold-and-Wait condition

Solution: Force each process to request all required resources at once
(i.e., in one shot). It cannot proceed until all resources have been
acquired, i.e., process either acquires all resources or stops. Also called
two-phase locking

No preemption condition

Solution: Allow a process to be aborted or its resources reclaimed by
another or by system, when competing over a resource

Circular wait condition

Solution: All resource types are numbered by an integer resource id.

Processes must request resources in numerical (decreasing) order of
resource |d ) Copyright ©: University of lllinois CS 241 Staff 14 I




Dining Philosophers solution
with numbered resources

First, recall the trivial broken
“solution”...

void philosopher(i) {
while true {
take left fork;
take right fork;
eat();
put left fork;
put right fork;

bocistorte
Copyright ©: University of Illinois CS 241 Staff



Dining Philosophers solution
[with numbered resources

First, recall the trivial broken
“solution”...

void philosopher(i) {
while true {
take left fork;
take right fork;
eat();
put left fork;
put right fork;

bocistorte
Copyright ©: University of Illinois CS 241 Staff



Dining Philosophers solution
with numbered resources

Instead, number
resources...

void philosopher(i) {
while true {
take lower-# fork; @
take higher-# fork; v
eat();
put lower-# fork;
put higher-# fork;

Descaxres

bocistorte
Copyright ©: University of Illinois CS 241 Staff



Dining Philosophers solution
with numbered resources

Instead, number
resources...

void philosopher(i) {
while true {
take lower-# fork;

k\

take higher-# fork; 1
eat();
pUt Iower-# fork’ rDegcayﬂfeg
put higher-# fork;
}

bocistorte
Copyright ©: University of Illinois CS 241 Staff



Dining Philosophers solution
with numbered resources

Instead, number
resources...

void philosopher(i) {
while true {
take lower-# fork;

k\

take higher-# fork; 1
eat();
pUt Iower-# fork’ rDegcayﬂfeg
put higher-# fork;
}

bocistorte
Copyright ©: University of Illinois CS 241 Staff



Ordered resource requests
[prevent deadlock: the proof

Suppose we have a deadlock (proof by
contradiction).

Then what does the resource
allocation graph look like”?

Cycle! o—>H
o—>< >0 —B
o<—i4

Resources are numbered...
Contra-

and increasing around the cycle |diction!
Copyright ©: University of lllinois CS 241 Staff 20 I




Are we always in trouble
[without ordering resources?

Not always:
@ —>\

°—>
o—m~

0—),\ 8

Ordered resource requests are
sufficient to avoid deadlock, but
not necessary.

Convenient, but may be conservative.
Copyright ©: University of Illinois CS 241 Staff 21




How to deal with deadlocks

The default
The “ostrich solution”

Prevention

design a system in such a way that deadlocks cannot occur, at least
with respect to serially reusable resources.

Detection

in a system that allows the possibility of deadlock, determine if deadlock
has occurred, and which processes and resources are involved.

Recovery

after a deadlock has been detected, clear the problem, allowing the
deadlocked processes to complete and the resources to be reused.

Usually involves destroying (at least one of) the affected processes and
starting them over.

Avoidance

impose less stringent conditions than for prevention, allowing the

possibility of deadlcggpbrﬁght%g:tugivgrseit%ﬁ mgsiggzj;t as it approaches.




[Deadlock Detection

Check to see if a deadlock has
occurred!

Single resource per type
Can use wait-for graph

Check for cycles
How?

Copyright ©: University of Illinois CS 241 Staff 23



[Wait for Graphs

Resource Allocation Graph Corresponding Wait For Graph

Copyright ©: University of lllinois CS 241 Staff 24




[Recovery From Deadlock

OPTIONS:

Kill all deadlocked processes and
release resources

Kill one deadlocked process at a time
and release Its resources

all or one of the processes to
a checkpoint that occurred before they
requested any resources

Note: with rollback, difficult to
prevent indefinite postponement

Copyright ©: University of Illinois CS 241 Staff 25




How to deal with deadlocks

The default
The “ostrich solution”

Prevention

design a system in such a way that deadlocks cannot occur, at least
with respect to serially reusable resources.

Detection

in a system that allows the possibility of deadlock, determine if deadlock
has occurred, and which processes and resources are involved.

Recovery

after a deadlock has been detected, clear the problem, allowing the
deadlocked processes to complete and the resources to be reused.

Usually involves destroying (at least one of) the affected processes and
starting them over.

Avoidance

impose less stringent conditions than for prevention, allowing the

possibility of deadlcggpbrﬁght%g:tugivgrseit%ﬁ mgsiggzj;t as it approaches.




