
Copyright ©: University of Illinois CS 241 Staff 1 1

Deadlocks

Copyright ©: University of Illinois CS 241 Staff 2

Deadlock

Copyright ©: University of Illinois CS 241 Staff 3

Deadlock Definition
 A process is deadlocked if it is waiting for an event

that will never occur.
 Typically, but not necessarily, more than one

process will be involved together in a deadlock
 Is deadlock the same as starvation (i.e.,

indefinitely postponed)?
 A process is indefinitely postponed if it is

delayed repeatedly over a long period of time
while the attention of the system is given to other
processes. (Logically the process may proceed
but the system never gives it the CPU.)

Copyright ©: University of Illinois CS 241 Staff 4

Necessary Conditions for Deadlock

 Mutual exclusion
 Processes claim exclusive control of the resources they require

 Hold-and-wait (a.k.a. wait-for) condition
 Processes hold resources already allocated to them while waiting for

additional resources
 No preemption condition

 Resources cannot be removed from the processes holding them until
used to completion

 Circular wait condition
 A circular chain of processes exists in which each process holds one

or more resources that are requested by the next process in the chain

Copyright ©: University of Illinois CS 241 Staff 5

 Mutual exclusion: Exclusive use of
chopsticks

 Hold and wait: Hold 1 chopstick, wait
for next

 No preemption: Cannot force another
philosopher to undo their hold

 Circular wait: Each waits for next
neighbor to put down chopstick

Dining Philosophers had it all

Copyright ©: University of Illinois CS 241 Staff 6

Formalizing circular wait:
The resource allocation graph

 Nodes
 Processes
 Resources

 Arcs
 From resource to process = resource assigned to

process
 From process to resource = process requests

(and is waiting for) resource

Copyright ©: University of Illinois CS 241 Staff 7

(a) resource R assigned to process A
(b) process B is requesting/waiting for resource S
(c) process C and D are in deadlock over resources

T and U

assign request

Formalizing circular wait:
The resource allocation graph

If we use the trivial broken
“solution”...

void philosopher(i) {
 while true {
 take left fork;
 take right fork;
 eat();
 put left fork;
 put right fork;
 }
}

Copyright ©: University of Illinois CS 241 Staff

Dining Philosophers
resource allocation graph

8

� � PROCESSES CHAP. 2

� �
 � � 	 � � � � � Lunch time in the Philosophy Department.

The life of a philosopher consists of alternate periods of eating and thinking.

(This is something of an abstraction, even for philosophers, but the other activities

are irrelevant here.) When a philosopher gets hungry, she tries to acquire her left

and right fork, one at a time, in either order. If successful in acquiring two forks,

she eats for a while, then puts down the forks and continues to think. The key

question is: Can you write a program for each philosopher that does what it is sup-

posed to do and never gets stuck? (It has been pointed out that the two-fork

requirement is somewhat artificial; perhaps we should switch from Italian to

Chinese food, substituting rice for spaghetti and chopsticks for forks.)

Figure 2-17 shows the obvious solution. The procedure take fork waits until

the specified fork is available and then seizes it. Unfortunately, the obvious solu-

tion is wrong. Suppose that all five philosophers take their left forks simultane-

ously. None will be able to take their right forks, and there will be a deadlock.

We could modify the program so that after taking the left fork, the program

checks to see if the right fork is available. If it is not, the philosopher puts down

the left one, waits for some time, and then repeats the whole process. This propo-

sal too, fails, although for a different reason. With a little bit of bad luck, all the

philosophers could start the algorithm simultaneously, picking up their left forks,

seeing that their right forks were not available, putting down their left forks, wait-

ing, picking up their left forks again simultaneously, and so on, forever. A situa-

tion like this, in which all the programs continue to run indefinitely but fail to

make any progress is called � � � � � � � �
 � . (It is called starvation even when the
problem does not occur in an Italian or a Chinese restaurant.)

Now you might think, ‘‘If the philosophers would just wait a random time

instead of the same time after failing to acquire the right-hand fork, the chance

Kravets

Copyright ©: University of Illinois CS 241 Staff

Dining Philosophers
resource allocation graph

9

If we use the trivial broken
“solution”...

One node per philosopher
and per fork

1. Everyone tries to pick up
left fork (request edges)

Kravets

Copyright ©: University of Illinois CS 241 Staff

Dining Philosophers
resource allocation graph

10

If we use the trivial broken
“solution”...

One node per philosopher
and per fork

1. Everyone tries to pick up
left fork (request edges)

2. Everyone succeeds!
(request edges become
assignment edges)

3. Everyone tries to pick up
right fork (request edges)

4. Cycle => deadlock

Kravets

Copyright ©: University of Illinois CS 241 Staff

Summary so far

 Definition of deadlock
 4 conditions for deadlock to happen

 Mutual exclusion
 Hold-and-wait
 No preemption
 Circular wait

 = cycle in resource allocation graph
 Next: How to deal with deadlock

11

Copyright ©: University of Illinois CS 241 Staff 12

How to deal with deadlocks

 The default
 The “ostrich solution”

 Prevention
 design a system in such a way that deadlocks cannot occur, at least

with respect to serially reusable resources.
 Detection

 in a system that allows the possibility of deadlock, determine if deadlock
has occurred, and which processes and resources are involved.

 Recovery
 after a deadlock has been detected, clear the problem, allowing the

deadlocked processes to complete and the resources to be reused.
Usually involves destroying (at least one of) the affected processes and
starting them over.

 Avoidance
 impose less stringent conditions than for prevention, allowing the

possibility of deadlock, but sidestepping it as it approaches.

Copyright ©: University of Illinois CS 241 Staff 13

The Default:Ostrich solution

 Do nothing! Deadlocked
processes just stay stuck.

 Rationale: Make the common
path faster and more reliable
 Deadlock prevention, avoidance or

detection/recovery algorithms are
expensive

 If deadlock occurs only rarely, it is
not worth the overhead to
implement any of these algorithms.

Copyright ©: University of Illinois CS 241 Staff 14

Deadlock Prevention

 Build the system so as to break one of the deadlock
conditions.
 Mutual exclusion

 Solution: Allow multiple processes to access CS. E.g., reading a file.
 Hold-and-Wait condition

 Solution: Force each process to request all required resources at once
(i.e., in one shot). It cannot proceed until all resources have been
acquired, i.e., process either acquires all resources or stops. Also called
two-phase locking

 No preemption condition
 Solution: Allow a process to be aborted or its resources reclaimed by

another or by system, when competing over a resource
 Circular wait condition

 Solution: All resource types are numbered by an integer resource id.
Processes must request resources in numerical (decreasing) order of
resource id.

Copyright ©: University of Illinois CS 241 Staff

Dining Philosophers solution
with numbered resources

15

Kravets

First, recall the trivial broken
“solution”...

void philosopher(i) {
 while true {
 take left fork;
 take right fork;
 eat();
 put left fork;
 put right fork;
 }
}

Copyright ©: University of Illinois CS 241 Staff 16

Kravets

Dining Philosophers solution
with numbered resources

First, recall the trivial broken
“solution”...

void philosopher(i) {
 while true {
 take left fork;
 take right fork;
 eat();
 put left fork;
 put right fork;
 }
}

Copyright ©: University of Illinois CS 241 Staff

Dining Philosophers solution
with numbered resources

17

Kravets

1

2
3

4

5

Instead, number
resources...

void philosopher(i) {
 while true {
 take lower-# fork;
 take higher-# fork;
 eat();
 put lower-# fork;
 put higher-# fork;
 }
}

Copyright ©: University of Illinois CS 241 Staff

Dining Philosophers solution
with numbered resources

18

Kravets

1

2
3

4

5

Instead, number
resources...

void philosopher(i) {
 while true {
 take lower-# fork;
 take higher-# fork;
 eat();
 put lower-# fork;
 put higher-# fork;
 }
}

Copyright ©: University of Illinois CS 241 Staff

Dining Philosophers solution
with numbered resources

19

Kravets

1

2
3

4

5

Instead, number
resources...

void philosopher(i) {
 while true {
 take lower-# fork;
 take higher-# fork;
 eat();
 put lower-# fork;
 put higher-# fork;
 }
}

 Suppose we have a deadlock (proof by
contradiction).

 Then what does the resource
allocation graph look like?
 Cycle!

 Resources are numbered...
 and increasing around the cycle

Contra-
diction!

Copyright ©: University of Illinois CS 241 Staff

Ordered resource requests
prevent deadlock: the proof

20

3
4

7
8

Copyright ©: University of Illinois CS 241 Staff

Are we always in trouble
without ordering resources?

 Not always:

 Ordered resource requests are
sufficient to avoid deadlock, but
not necessary.

 Convenient, but may be conservative.
21

3
4

7
8

Copyright ©: University of Illinois CS 241 Staff 22

How to deal with deadlocks

 The default
 The “ostrich solution”

 Prevention
 design a system in such a way that deadlocks cannot occur, at least

with respect to serially reusable resources.
 Detection

 in a system that allows the possibility of deadlock, determine if deadlock
has occurred, and which processes and resources are involved.

 Recovery
 after a deadlock has been detected, clear the problem, allowing the

deadlocked processes to complete and the resources to be reused.
Usually involves destroying (at least one of) the affected processes and
starting them over.

 Avoidance
 impose less stringent conditions than for prevention, allowing the

possibility of deadlock, but sidestepping it as it approaches.

Copyright ©: University of Illinois CS 241 Staff 23

Deadlock Detection

 Check to see if a deadlock has
occurred!

 Single resource per type
 Can use wait-for graph
 Check for cycles

 How?

Copyright ©: University of Illinois CS 241 Staff 24

Wait for Graphs

Resource Allocation Graph Corresponding Wait For Graph

Copyright ©: University of Illinois CS 241 Staff 25

Recovery From Deadlock

 OPTIONS:
 Kill all deadlocked processes and

release resources
 Kill one deadlocked process at a time

and release its resources
 Rollback all or one of the processes to

a checkpoint that occurred before they
requested any resources

 Note: with rollback, difficult to
prevent indefinite postponement

Copyright ©: University of Illinois CS 241 Staff 26

How to deal with deadlocks

 The default
 The “ostrich solution”

 Prevention
 design a system in such a way that deadlocks cannot occur, at least

with respect to serially reusable resources.
 Detection

 in a system that allows the possibility of deadlock, determine if deadlock
has occurred, and which processes and resources are involved.

 Recovery
 after a deadlock has been detected, clear the problem, allowing the

deadlocked processes to complete and the resources to be reused.
Usually involves destroying (at least one of) the affected processes and
starting them over.

 Avoidance
 impose less stringent conditions than for prevention, allowing the

possibility of deadlock, but sidestepping it as it approaches.

