
Copyright ©: University of Illinois CS 241 Staff 1 1

Classical Synchronization 
Problems
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This lecture

 Goals:
 Introduce classical synchronization 

problems
 Topics

 Producer-Consumer Problem
 Reader-Writer Problem
 Dining Philosophers Problem
 Sleeping Barber’s Problem
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3. The Sleeping Barber

 N customer chairs (waiting 
chairs)

 One barber who can cut one 
customer’s hair at any time

 No waiting customer => 
barber sleeps

 Customer enters => 
 If all waiting chairs full, 

customer leaves
 Otherwise, if barber asleep, 

wake up barber and make him 
work

 Otherwise, barber is busy – 
wait in a chair
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82 PROCESSES CHAP. 2

#define CHAIRS 5 /* # chairs for waiting customers */

typedef int semaphore; /* use your imagination */

semaphore customers = 0; /* # of customers waiting for service */
semaphore barbers = 0; /* # of barbers waiting for customers */
semaphore mutex = 1; /* for mutual exclusion */
int waiting = 0; /* customers are waiting (not being cut) */

void barber(void)
{
while (TRUE) {

down(customers); /* go to sleep if # of customers is 0 */
down(mutex); /* acquire access to ’waiting’ */
waiting = waiting - 1; /* decrement count of waiting customers */
up(barbers); /* one barber is now ready to cut hair */
up(mutex); /* release ’waiting’ */
cut hair(); /* cut hair (outside critical region) */

}
}

void customer(void)
{
down(mutex); /* enter critical region */
if (waiting < CHAIRS) { /* if there are no free chairs, leave */

waiting = waiting + 1; /* increment count of waiting customers */
up(customers); /* wake up barber if necessary */
up(mutex); /* release access to ’waiting’ */
down(barbers); /* go to sleep if # of free barbers is 0 */
get haircut(); /* be seated and be serviced */

} else {
up(mutex); /* shop is full; do not wait */

}
}

Figure 2-21. A solution to the sleeping barber problem.

2.4 PROCESS SCHEDULING

In the examples of the previous sections, we have often had situations in

which two or more processes (e.g., producer and consumer) were logically run-

nable. When more than one process is runnable, the operating system must decide

which one to run first. The part of the operating system that makes this decision

is called the scheduler; the algorithm it uses is called the scheduling algorithm.

[From Tanenbaum, Modern Operating Systems]

Sleeping Barber solution (1)
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[From Tanenbaum, Modern Operating Systems]

Sleeping Barber solution (2)

Note:
down means semWait
up means semSignal
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[From Tanenbaum, Modern Operating Systems]

Sleeping Barber solution,
plus code comments
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4. Dining Philosophers: an
intellectual game

 N philosophers and N forks
 Philosophers eat/think
 Eating needs 2 forks
 Pick one fork at a time � � PROCESSES CHAP. 2

� � 
 � � 	 � � � � � Lunch time in the Philosophy Department.

The life of a philosopher consists of alternate periods of eating and thinking.

(This is something of an abstraction, even for philosophers, but the other activities

are irrelevant here.) When a philosopher gets hungry, she tries to acquire her left

and right fork, one at a time, in either order. If successful in acquiring two forks,

she eats for a while, then puts down the forks and continues to think. The key

question is: Can you write a program for each philosopher that does what it is sup-

posed to do and never gets stuck? (It has been pointed out that the two-fork

requirement is somewhat artificial; perhaps we should switch from Italian to

Chinese food, substituting rice for spaghetti and chopsticks for forks.)

Figure 2-17 shows the obvious solution. The procedure take fork waits until

the specified fork is available and then seizes it. Unfortunately, the obvious solu-

tion is wrong. Suppose that all five philosophers take their left forks simultane-

ously. None will be able to take their right forks, and there will be a deadlock.

We could modify the program so that after taking the left fork, the program

checks to see if the right fork is available. If it is not, the philosopher puts down

the left one, waits for some time, and then repeats the whole process. This propo-

sal too, fails, although for a different reason. With a little bit of bad luck, all the

philosophers could start the algorithm simultaneously, picking up their left forks,

seeing that their right forks were not available, putting down their left forks, wait-

ing, picking up their left forks again simultaneously, and so on, forever. A situa-

tion like this, in which all the programs continue to run indefinitely but fail to

make any progress is called � � � � � � � � 
 � . (It is called starvation even when the
problem does not occur in an Italian or a Chinese restaurant.)

Now you might think, ‘‘If the philosophers would just wait a random time

instead of the same time after failing to acquire the right-hand fork, the chance
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4. Dining Philosophers: an
intellectual game

(John Stuart Mill,
of his own free will,
On half a pint of shandy 
was particularly ill...)

Kravets
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A non-solution to the dining philosophers problem
 Deadlock: everyone picks up their left fork first, 

then waits for right fork…
[From Tanenbaum, Modern Operating Systems]

SEC. 2.3 CLASSICAL IPC PROBLEMS 77

#define N 5 /* number of philosophers */

void philosopher(int i) /* i: philosopher number, from 0 to 4 */
{
while (TRUE) {

think(); /* philosopher is thinking */
take fork(i); /* take left fork */
take fork((i+1) % N); /* take right fork; % is modulo operator */
eat(); /* yum-yum, spaghetti */
put fork(i); /* put left fork back on the table */
put fork((i+1) % N); /* put right fork back on the table */

}
}

Figure 2-17. A nonsolution to the dining philosophers problem.

that everything would continue in lockstep for even an hour is very small.’’ This

observation is true, but in some applications one would prefer a solution that

always works and cannot fail due to an unlikely series of random numbers.

(Think about safety control in a nuclear power plant.)

One improvement to Fig. 2-17 that has no deadlock and no starvation is to

protect the five statements following the call to think by a binary semaphore.

Before starting to acquire forks, a philosopher would do a DOWN on mutex. After

replacing the forks, she would do an UP on mutex. From a theoretical viewpoint,

this solution is adequate. From a practical one, it has a performance bug: only one

philosopher can be eating at any instant. With five forks available, we should be

able to allow two philosophers to eat at the same time.

The solution presented in Fig. 2-18 is correct and also allows the maximum

parallelism for an arbitrary number of philosophers. It uses an array, state, to

keep track of whether a philosopher is eating, thinking, or hungry (trying to

acquire forks). A philosopher may move only into eating state if neither neighbor

is eating. Philosopher i’s neighbors are defined by the macros LEFT and RIGHT.

In other words, if i is 2, LEFT is 1 and RIGHT is 3.

The program uses an array of semaphores, one per philosopher, so hungry

philosophers can block if the needed forks are busy. Note that each process runs

the procedure philosopher as its main code, but the other procedures, take forks,

put forks, and test are ordinary procedures and not separate processes.

2.3.2 The Readers and Writers Problem

The dining philosophers problem is useful for modeling processes that are

competing for exclusive access to a limited number of resources, such as I/O

devices. Another famous problem is the readers and writers problem (Courtois et

al., 1971), which models access to a data base. Imagine, for example, an airline

Does this solve the problem?
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Necessary and sufficient 
conditions for deadlock

 Mutual exclusion
 Hold and wait
 No preemption
 Circular wait

 Dining Philosophers has all four of 
these properties.
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 Mutual exclusion: Exclusive use of 
chopsticks

 Hold and wait: Hold 1 chopstick, wait for 
next

 No preemption: cannot force another to 
release held resource

 Circular wait: Each waits for next neighbor 
to put down chopstick

Necessary and sufficient 
conditions for deadlock



Copyright ©: University of Illinois CS 241 Staff 13
[From Tanenbaum, Modern Operating Systems]

78 PROCESSES CHAP. 2

#define N 5 /* number of philosophers */
#define LEFT (i-1)%N /* number of i’s left neighbor */
#define RIGHT (i+1)%N /* number of i’s right neighbor */
#define THINKING 0 /* philosopher is thinking */
#define HUNGRY 1 /* philosopher is trying to get forks */
#define EATING 2 /* philosopher is eating */

typedef int semaphore; /* semaphores are a special kind of int */
int state[N]; /* array to keep track of everyone’s state */
semaphore mutex = 1; /* mutual exclusion for critical regions */
semaphore s[N]; /* one semaphore per philosopher */

void philosopher(int i) /* i: philosopher number, from 0 to N-1 */
{
while (TRUE) { /* repeat forever */

think(); /* philosopher is thinking */
take forks(i); /* acquire two forks or block */
eat(); /* yum-yum, spaghetti */
put forks(i); /* put both forks back on table */

}
}

void take forks(int i) /* i: philosopher number, from 0 to N-1 */
{
down(&mutex); /* enter critical region */
state[i] = HUNGRY; /* record fact that philosopher i is hungry */
test(i); /* try to acquire 2 forks */
up(&mutex); /* exit critical region */
down(&s[i]); /* block if forks were not acquired */
}

void put forks(i) /* i: philosopher number, from 0 to N-1 */
{
down(&mutex); /* enter critical region */
state[i] = THINKING; /* philosopher has finished eating */
test(LEFT); /* see if left neighbor can now eat */
test(RIGHT); /* see if right neighbor can now eat */
up(&mutex); /* exit critical region */
}

void test(i) /* i: philosopher number, from 0 to N-1 */
{
if (state[i] == HUNGRY && state[LEFT] != EATING && state[RIGHT] != EATING) {

state[i] = EATING;
up(&s[i]);

}
}

Figure 2-18. A solution to the dining philosopher’s problem.

Dining Philosophers solution
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[From Tanenbaum, Modern Operating Systems]
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 Made picking up both left and right 
chopsticks an atomic operation?
 That works (i.e., prevents deadlock)
 This is essentially what we just did!

 Or, N philosophers & N+1 chopsticks?
 That works too!

 And we’ll see another solution later...

What if...
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Summary

Classical synchronization problems
 Producer-Consumer Problem
 Reader-Writer Problem
 Sleeping Barber’s Problem
 Dining Philosophers Problem
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Deadlocks
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Deadlock
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Deadlock Definition
 A process is deadlocked if it is waiting for an event 

that will never occur. 
 Typically, but not necessarily, more than one 

process will be involved together in a deadlock
 Is deadlock the same as starvation (i.e., 

indefinitely postponed)? 
 A process is indefinitely postponed if it is 

delayed repeatedly over a long period of time 
while the attention of the system is given to other 
processes. (Logically the process may proceed 
but the system never gives it the CPU.)
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Necessary Conditions for Deadlock

 Mutual exclusion
 Processes claim exclusive control of the resources they require

 Hold-and-wait (a.k.a. wait-for) condition
 Processes hold resources already allocated to them while waiting for 

additional resources
 No preemption condition

 Resources cannot be removed from the processes holding them until 
used to completion

 Circular wait condition
 A circular chain of processes exists in which each process holds one 

or more resources that are requested by the next process in the chain 
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 Mutual exclusion 
 Exclusive use of chopsticks

 Hold and wait condition
 Hold 1 chopstick, wait for next

 No preemption condition
 Cannot force another to undo their hold

 Circular wait condition
 Each waits for next neighbor to put down 

chopstick

Dining Philosophers had it all
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Mutual Exclusion

 Processes claim exclusive control of the 
resources they require

 How to break it?
 Grant non-exclusive access only 
  (e.g., read-only)
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Hold and Wait Condition
 Processes hold resources already allocated 

to them while waiting for additional 
resources

 How to break it?
 Allow processes to either access all its required 

resources at once, or none of them
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No Preemption Condition
 Resources cannot be removed from the 

processes holding them until used to 
completion

 How to break it?
 Allow processes to be pre-empted and forced to 

abort themselves or release held resources
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Circular Wait Condition

 A circular chain of processes exists in 
which each process holds one or more 
resources that are requested by the next 
process in the chain

 How to break it?
 Allow processes to access resources only in 

increasing order of resource id
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Resource Allocation Graph 

 Nodes
 Processes 
 Resources 

 Arcs
 From resource to process = resource assigned to 

process
 From process to resource = process requests 

(and is waiting for) resource
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(a) resource R assigned to process A
(b) process B is requesting/waiting for resource S
(c) process C and D are in deadlock over resources 

T and U

assign request

Resource Allocation Graph 



If we use the trivial broken 
“solution”...

void philosopher(i) {
  while true {
    take left fork;
    take right fork;
    eat();
    put left fork;
    put right fork;
  }
}
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Dining Philosophers
resource allocation graph

28

� � PROCESSES CHAP. 2

� � 
 � � 	 � � � � � Lunch time in the Philosophy Department.

The life of a philosopher consists of alternate periods of eating and thinking.

(This is something of an abstraction, even for philosophers, but the other activities

are irrelevant here.) When a philosopher gets hungry, she tries to acquire her left

and right fork, one at a time, in either order. If successful in acquiring two forks,

she eats for a while, then puts down the forks and continues to think. The key

question is: Can you write a program for each philosopher that does what it is sup-

posed to do and never gets stuck? (It has been pointed out that the two-fork

requirement is somewhat artificial; perhaps we should switch from Italian to

Chinese food, substituting rice for spaghetti and chopsticks for forks.)

Figure 2-17 shows the obvious solution. The procedure take fork waits until

the specified fork is available and then seizes it. Unfortunately, the obvious solu-

tion is wrong. Suppose that all five philosophers take their left forks simultane-

ously. None will be able to take their right forks, and there will be a deadlock.

We could modify the program so that after taking the left fork, the program

checks to see if the right fork is available. If it is not, the philosopher puts down

the left one, waits for some time, and then repeats the whole process. This propo-

sal too, fails, although for a different reason. With a little bit of bad luck, all the

philosophers could start the algorithm simultaneously, picking up their left forks,

seeing that their right forks were not available, putting down their left forks, wait-

ing, picking up their left forks again simultaneously, and so on, forever. A situa-

tion like this, in which all the programs continue to run indefinitely but fail to

make any progress is called � � � � � � � � 
 � . (It is called starvation even when the
problem does not occur in an Italian or a Chinese restaurant.)

Now you might think, ‘‘If the philosophers would just wait a random time

instead of the same time after failing to acquire the right-hand fork, the chance

Kravets
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Dining Philosophers
resource allocation graph

29

If we use the trivial broken 
“solution”...

One node per philosopher 
and per fork

1. Everyone tries to pick up 
left fork (request edges)

Kravets
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Dining Philosophers
resource allocation graph

30

If we use the trivial broken 
“solution”...

One node per philosopher 
and per fork

1. Everyone tries to pick up 
left fork (request edges)

2. Everyone succeeds! 
(request edges become 
assignment edges)

3. Everyone tries to pick up 
right fork (request edges)

4. Cycle => deadlock

Kravets
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Summary

 Definition of deadlock
 4 conditions for deadlock to happen

 How to tell when circular wait condition 
happens: cycle in resource allocation 
graph

 Next time: How to deal with deadlock 

31


