Classical Synchronization

Problems
o
T

Copyright ©: University of Illinois CS 241 Staff

[This lecture

Goals:

Introduce classical synchronization
problems

Topics

Dining Philosophers Problem
Sleeping Barber’s Problem

Copyright ©: University of Illinois CS 241 Staff 2

3. The Sleeping Barber

N customer chairs (waiting
chairs)

One barber who can cut one
customer’s hair at any time

No waiting customer =>
barber sleeps

Customer enters =>

o If all waiting chairs full,
customer leaves

© Otherwise, if barber asleep,
wake up barber and make him
work

© Otherwise, barber is busy —
wait in a chair copyright®: University of lllinois CS 241 Staff 3

Sleeping Barber solution (1)

#define CHAIRS 5 /* # chairs for waiting customers */
typedef int semaphore; /* use your imagination */

semaphore customers = 0; /* # of customers waiting for service */
semaphore barbers = 0; /* # of barbers waiting for customers */
semaphore mutex = 1; /* for mutual exclusion */

int waiting = O; /* customers are waiting (not being cut) */

Copyright ©: University of lllinois CS 241 Staff 4

Sleeping Barber solution (2)

}/oid barber(void) void customer(void)
{
while (TRUE) { <€ =3 down(mutex);
down(customers); if (waiting < CHAIRS) {
down(mutex); waiting = waiting + 1;
waiting = waiting - 1; up(customers);
up(barbers); up(mutex);
up(mutex); down(barbers);
cut_hair(); get_haircut();
} }else {
} up(mutex);
Note: }}

down means semwait
up means semSignal

Copyright ©: University of Illinois CS 241 Staff 5

Sleeping Barber solution,
plus code comments

void barber(void)

{
while (TRUE) {
down(customers); /* go to sleep if # of customers is 0 */
down(mutex); /* acquire access to ‘waiting’ */
waiting = waiting - 1; /* decrement count of waiting customers */
up(barbers); /* one barber is now ready to cut hair */
up(mutex); /* release 'waiting’ */
cut_hair(); /* cut hair (outside critical region) */
¥
}

Copyright ©: University of Illinois CS 241 Staff 6

Sleeping Barber solution,
plus code comments

void customer(void)

{
down(mutex); /* enter critical region */
if (waiting < CHAIRS) { /* if there are no free chairs, leave */
waiting = waiting + 1; /* increment count of waiting customers */
up(customers); /* wake up barber if necessary */
up(mutex); /* release access to 'waiting’ */
down(barbers); /* go to sleep if # of free barbers is 0 */
get_haircut(); /* be seated and be serviced */
}else {
up(mutex); /* shop is full; do not wait */
¥
¥

Copyright ©: University of Illinois CS 241 Staff 7

4. Dining Philosophers: an
intellectual game

N philosophers and N forks
Philosophers eat/think
Eating needs 2 forks

Pick one fork at a time

=N
s>

4. Dining Philosophers: an
intellectual game

(John Stuart Mill,

of his own free will,

On half a pint of shandy
was particularly ill...)

bocistorte
Copyright ©: University of Illinois CS 241 Staff 9

Does this solve the problem??

#define N 5 /* number of philosophers */
void philosopher(int i) /* i: philosopher number, from 0 to 4 */
{
while (TRUE) {
think(); /* philosopher is thinking */
take_fork(i); /* take left fork */
take _fork((i+1) % N); /* take right fork; % is modulo operator */
eat(); /* yum-yum, spaghetti */
put_fork(i); /* put left fork back on the table */
put_fork((i+1) % N); /* put right fork back on the table */
}
}

A non-solution to the dining philosophers problem

Deadlock: everyone picks up their left fork first,
then,walits.forright.fork... o

Necessary and sufficient
[conditions for deadlock

Mutual exclusion
Hold and wait
No preemption
Circular wait

Dining Philosophers has all four of
these properties.

Copyright ©: University of Illinois CS 241 Staff 11

Necessary and sufficient
[conditions for deadlock

Mutual exclusion: Exclusive use of
chopsticks

Hold and walit: Hold 1 chopstick, wait for
next

No preemption: cannot force another to
release held resource

Circular wait: Each waits for next neighbor
to put down chopstick

Copyright ©: University of lllinois CS 241 Staff 12

Dining Philosophers solution

#define N 5 /* number of philosophers */
#define LEFT (i-1)%N /* number of i’s left neighbor */
#define RIGHT (i+1)%N /* number of i’s right neighbor */
#define THINKING 0 /* philosopher is thinking */
#define HUNGRY 1 /* philosopher is trying to get forks */
#define EATING 2 /* philosopher is eating */
typedef int semaphore; /* semaphores are a special kind of int */
int state[N]; /* array to keep track of everyone’s state */
semaphore mutex = 1; /* mutual exclusion for critical regions */
semaphore s[N]; /* one semaphore per philosopher */
void philosopher(int i) /* i: philosopher number, from 0 to N-1 */
{
while (TRUE) { /* repeat forever */
think(); /* philosopher is thinking */
take _forks(i); /* acquire two forks or block */
eat(); /* yum-yum, spaghetti */
put_forks(i); /* put both forks back on table */
}

} Copyright ©: University of lllinois CS 241 Staff 13

Dining Philosophers solution

void take_forks(int i) /* i. philosopher number, from 0 to N-1 */
{
down(&mutex); /* enter critical region */
state[i] = HUNGRY; /* record fact that philosopher i is hungry */
test(i); /* try to acquire 2 forks */
up(&mutex); /* exit critical region */
down(&sJi]); /* block if forks were not acquired */
}
void put_forks(i) /* i: philosopher number, from 0 to N-1 */
{
down(&mutex); /* enter critical region */
state[i] = THINKING; /* philosopher has finished eating */
test(LEFT); /* see if left neighbor can now eat */
test(RIGHT); /* see if right neighbor can now eat */
up(&mutex); /* exit critical region */
}
void test(i) /* i: philosopher number, from 0 to N-1 */
{

if (state[i] == HUNGRY && state[LEFT] != EATING && state[RIGHT] != EATING) {
state[i] = EATING;

up(&sli]);

} Copyright ©: University of lllinois CS 241 Staff 14

[What if...

Made picking up both left and right

chopsticks an atomic operation?
That works (i.e., prevents deadlock)
This is essentially what we just did!

Or, N philosophers & N+1 chopsticks?
That works too!

And we’ll see another solution later...

Copyright ©: University of Illinois CS 241 Staff 15

[Summary

Classical synchronization problems
Producer-Consumer Problem
Reader-Writer Problem
Sleeping Barber’s Problem
Dining Philosophers Problem

Copyright ©: University of Illinois CS 241 Staff 16

Deadlocks

Copyrigbo@yriyah@téttivarejtavd, lbdisZGRer Mratafs, Gupta

17

[Deadlock]

-

E
3

Deadlock Definition

A process is If it is waiting for an event
that will never occur.

Typically, but not necessarily, more than one
process will be involved together in a deadlock

|s deadlock the same as starvation (i.e.,
indefinitely postponed)?

A process is indefinitely postponed if it is
delayed repeatedly over a long period of time
while the attention of the system is given to other
processes. (Logically the process may proceed
but the system never gives it the CPU.)

Copyright ©: University of Illinois CS 241 Staff 19

Necessary Conditions for Deadlock

Mutual exclusion
Processes claim control of the resources they require

Hold-and-wait (a.k.a. wait-for) condition

Processes hold resources already allocated to them while waiting for
additional resources

No preemption condition

Resources cannot be removed from the processes holding them until
used to completion

Circular wait condition

A of processes exists in which each process holds one
or more resources that are requested by the next process in the chain

Copyright ©: University of lllinois CS 241 Staff 20

[Dining Philosophers had it all

Mutual exclusion
Exclusive use of chopsticks

Hold and wait condition
Hold 1 chopstick, wait for next

No preemption condition
Cannot force another to undo their hold

Circular wait condition

Each waits for next neighbor to put down
chopstick

Copyright ©: University of Illinois CS 241 Staff 21

[I\/Iutual Exclusion

Processes claim exclusive control of the
resources they require

How to break it?

Grant non-exclusive access only
(e.g., read-only)

Copyright ©: University of Illinois CS 241 Staff 22

[Hold and Wait Condition

Processes hold resources already allocated
to them while waiting for additional
resources

How to break it?

Allow processes to either access all its required
resources at once, or none of them

Copyright ©: University of Illinois CS 241 Staff 23

[No Preemption Condition

Resources cannot be removed from the

processes holding them until used to
completion

How to break it?

Allow processes to be pre-empted and forced to
abort themselves or release held resources

Copyright ©: University of Illinois CS 241 Staff 24

[Circular Wait Condition

A circular chain of processes exists In
which each process holds one or more

resources that are requested by the next
process in the chain

How to break it?

Allow processes to access resources only in
iIncreasing order of resource id

Copyright ©: University of Illinois CS 241 Staff 25

Resource Allocation Graph

Nodes
Processes
Resources

Arcs

From resource to process = resource assigned to
process

From process to resource = process requests
(and is waiting for) resource

Copyright ©: University of lllinois CS 241 Staff 26

Resource Allocation Graph

®

A

assign

R

(a)

S

request

®

(b)

A

\

7

\@)

resource R assigned to process A

process B is requesting/waiting for resource S
process C and D are in deadlock over resources

Tand U

Copyright ©: University of Illinois CS 241 Staff

Dining Philosophers
resource allocation graph

If we use the trivial broken
“solution”...

void philosopher(i) {
while true {
take left fork;
take right fork;
eat();
put left fork;
put right fork;

bocistorte
Copyright ©: University of Illinois CS 241 Staff

Dining Philosophers
resource allocation graph

If we use the trivial broken
“solution”...

One node per philosopher
and per fork

1. Everyone tries to pick up
left fork (request edges)

z\

Descaxres

bocistorte
Copyright ©: University of Illinois CS 241 Staff

Dining Philosophers
resource allocation graph

If we use the trivial broken
“solution”...

One node per philosopher
and per fork

1. Everyone tries to pick up
left fork (request edges)

2. Everyone succeeds!
(request edges become
assignment edges)

3. Everyone tries to pick up
right fork (request edges)

4. Cycle => deadlock

bocistorte
Copyright ©: University of Illinois CS 241 Staff

[Summary

Definition of deadlock

4 conditions for deadlock to happen

How to tell when circular wait condition
happens: cycle in resource allocation
graph

Next time: How to deal with deadlock

Copyright ©: University of Illinois CS 241 Staff 31

