
Copyright ©: University of Illinois CS 241 Staff 1 1

Classical Synchronization
Problems

Copyright ©: University of Illinois CS 241 Staff 2

This lecture

 Goals:
 Introduce classical synchronization

problems
 Topics

 Producer-Consumer Problem
 Reader-Writer Problem
 Dining Philosophers Problem
 Sleeping Barber’s Problem

Copyright ©: University of Illinois CS 241 Staff 3

3. The Sleeping Barber

 N customer chairs (waiting
chairs)

 One barber who can cut one
customer’s hair at any time

 No waiting customer =>
barber sleeps

 Customer enters =>
 If all waiting chairs full,

customer leaves
 Otherwise, if barber asleep,

wake up barber and make him
work

 Otherwise, barber is busy –
wait in a chair

Copyright ©: University of Illinois CS 241 Staff 4

82 PROCESSES CHAP. 2

#define CHAIRS 5 /* # chairs for waiting customers */

typedef int semaphore; /* use your imagination */

semaphore customers = 0; /* # of customers waiting for service */
semaphore barbers = 0; /* # of barbers waiting for customers */
semaphore mutex = 1; /* for mutual exclusion */
int waiting = 0; /* customers are waiting (not being cut) */

void barber(void)
{
while (TRUE) {

down(customers); /* go to sleep if # of customers is 0 */
down(mutex); /* acquire access to ’waiting’ */
waiting = waiting - 1; /* decrement count of waiting customers */
up(barbers); /* one barber is now ready to cut hair */
up(mutex); /* release ’waiting’ */
cut hair(); /* cut hair (outside critical region) */

}
}

void customer(void)
{
down(mutex); /* enter critical region */
if (waiting < CHAIRS) { /* if there are no free chairs, leave */

waiting = waiting + 1; /* increment count of waiting customers */
up(customers); /* wake up barber if necessary */
up(mutex); /* release access to ’waiting’ */
down(barbers); /* go to sleep if # of free barbers is 0 */
get haircut(); /* be seated and be serviced */

} else {
up(mutex); /* shop is full; do not wait */

}
}

Figure 2-21. A solution to the sleeping barber problem.

2.4 PROCESS SCHEDULING

In the examples of the previous sections, we have often had situations in

which two or more processes (e.g., producer and consumer) were logically run-

nable. When more than one process is runnable, the operating system must decide

which one to run first. The part of the operating system that makes this decision

is called the scheduler; the algorithm it uses is called the scheduling algorithm.

[From Tanenbaum, Modern Operating Systems]

Sleeping Barber solution (1)

Copyright ©: University of Illinois CS 241 Staff 5

82 PROCESSES CHAP. 2

#define CHAIRS 5 /* # chairs for waiting customers */

typedef int semaphore; /* use your imagination */

semaphore customers = 0; /* # of customers waiting for service */
semaphore barbers = 0; /* # of barbers waiting for customers */
semaphore mutex = 1; /* for mutual exclusion */
int waiting = 0; /* customers are waiting (not being cut) */

void barber(void)
{
while (TRUE) {

down(customers); /* go to sleep if # of customers is 0 */
down(mutex); /* acquire access to ’waiting’ */
waiting = waiting - 1; /* decrement count of waiting customers */
up(barbers); /* one barber is now ready to cut hair */
up(mutex); /* release ’waiting’ */
cut hair(); /* cut hair (outside critical region) */

}
}

void customer(void)
{
down(mutex); /* enter critical region */
if (waiting < CHAIRS) { /* if there are no free chairs, leave */

waiting = waiting + 1; /* increment count of waiting customers */
up(customers); /* wake up barber if necessary */
up(mutex); /* release access to ’waiting’ */
down(barbers); /* go to sleep if # of free barbers is 0 */
get haircut(); /* be seated and be serviced */

} else {
up(mutex); /* shop is full; do not wait */

}
}

Figure 2-21. A solution to the sleeping barber problem.

2.4 PROCESS SCHEDULING

In the examples of the previous sections, we have often had situations in

which two or more processes (e.g., producer and consumer) were logically run-

nable. When more than one process is runnable, the operating system must decide

which one to run first. The part of the operating system that makes this decision

is called the scheduler; the algorithm it uses is called the scheduling algorithm.

82 PROCESSES CHAP. 2

#define CHAIRS 5 /* # chairs for waiting customers */

typedef int semaphore; /* use your imagination */

semaphore customers = 0; /* # of customers waiting for service */
semaphore barbers = 0; /* # of barbers waiting for customers */
semaphore mutex = 1; /* for mutual exclusion */
int waiting = 0; /* customers are waiting (not being cut) */

void barber(void)
{
while (TRUE) {

down(customers); /* go to sleep if # of customers is 0 */
down(mutex); /* acquire access to ’waiting’ */
waiting = waiting - 1; /* decrement count of waiting customers */
up(barbers); /* one barber is now ready to cut hair */
up(mutex); /* release ’waiting’ */
cut hair(); /* cut hair (outside critical region) */

}
}

void customer(void)
{
down(mutex); /* enter critical region */
if (waiting < CHAIRS) { /* if there are no free chairs, leave */

waiting = waiting + 1; /* increment count of waiting customers */
up(customers); /* wake up barber if necessary */
up(mutex); /* release access to ’waiting’ */
down(barbers); /* go to sleep if # of free barbers is 0 */
get haircut(); /* be seated and be serviced */

} else {
up(mutex); /* shop is full; do not wait */

}
}

Figure 2-21. A solution to the sleeping barber problem.

2.4 PROCESS SCHEDULING

In the examples of the previous sections, we have often had situations in

which two or more processes (e.g., producer and consumer) were logically run-

nable. When more than one process is runnable, the operating system must decide

which one to run first. The part of the operating system that makes this decision

is called the scheduler; the algorithm it uses is called the scheduling algorithm.

[From Tanenbaum, Modern Operating Systems]

Sleeping Barber solution (2)

Note:
down means semWait
up means semSignal

Copyright ©: University of Illinois CS 241 Staff 6

82 PROCESSES CHAP. 2

#define CHAIRS 5 /* # chairs for waiting customers */

typedef int semaphore; /* use your imagination */

semaphore customers = 0; /* # of customers waiting for service */
semaphore barbers = 0; /* # of barbers waiting for customers */
semaphore mutex = 1; /* for mutual exclusion */
int waiting = 0; /* customers are waiting (not being cut) */

void barber(void)
{
while (TRUE) {

down(customers); /* go to sleep if # of customers is 0 */
down(mutex); /* acquire access to ’waiting’ */
waiting = waiting - 1; /* decrement count of waiting customers */
up(barbers); /* one barber is now ready to cut hair */
up(mutex); /* release ’waiting’ */
cut hair(); /* cut hair (outside critical region) */

}
}

void customer(void)
{
down(mutex); /* enter critical region */
if (waiting < CHAIRS) { /* if there are no free chairs, leave */

waiting = waiting + 1; /* increment count of waiting customers */
up(customers); /* wake up barber if necessary */
up(mutex); /* release access to ’waiting’ */
down(barbers); /* go to sleep if # of free barbers is 0 */
get haircut(); /* be seated and be serviced */

} else {
up(mutex); /* shop is full; do not wait */

}
}

Figure 2-21. A solution to the sleeping barber problem.

2.4 PROCESS SCHEDULING

In the examples of the previous sections, we have often had situations in

which two or more processes (e.g., producer and consumer) were logically run-

nable. When more than one process is runnable, the operating system must decide

which one to run first. The part of the operating system that makes this decision

is called the scheduler; the algorithm it uses is called the scheduling algorithm.

[From Tanenbaum, Modern Operating Systems]

Sleeping Barber solution,
plus code comments

Copyright ©: University of Illinois CS 241 Staff 7

82 PROCESSES CHAP. 2

#define CHAIRS 5 /* # chairs for waiting customers */

typedef int semaphore; /* use your imagination */

semaphore customers = 0; /* # of customers waiting for service */
semaphore barbers = 0; /* # of barbers waiting for customers */
semaphore mutex = 1; /* for mutual exclusion */
int waiting = 0; /* customers are waiting (not being cut) */

void barber(void)
{
while (TRUE) {

down(customers); /* go to sleep if # of customers is 0 */
down(mutex); /* acquire access to ’waiting’ */
waiting = waiting - 1; /* decrement count of waiting customers */
up(barbers); /* one barber is now ready to cut hair */
up(mutex); /* release ’waiting’ */
cut hair(); /* cut hair (outside critical region) */

}
}

void customer(void)
{
down(mutex); /* enter critical region */
if (waiting < CHAIRS) { /* if there are no free chairs, leave */

waiting = waiting + 1; /* increment count of waiting customers */
up(customers); /* wake up barber if necessary */
up(mutex); /* release access to ’waiting’ */
down(barbers); /* go to sleep if # of free barbers is 0 */
get haircut(); /* be seated and be serviced */

} else {
up(mutex); /* shop is full; do not wait */

}
}

Figure 2-21. A solution to the sleeping barber problem.

2.4 PROCESS SCHEDULING

In the examples of the previous sections, we have often had situations in

which two or more processes (e.g., producer and consumer) were logically run-

nable. When more than one process is runnable, the operating system must decide

which one to run first. The part of the operating system that makes this decision

is called the scheduler; the algorithm it uses is called the scheduling algorithm.

[From Tanenbaum, Modern Operating Systems]

Sleeping Barber solution,
plus code comments

Copyright ©: University of Illinois CS 241 Staff 8

4. Dining Philosophers: an
intellectual game

 N philosophers and N forks
 Philosophers eat/think
 Eating needs 2 forks
 Pick one fork at a time � � PROCESSES CHAP. 2

� �
 � � 	 � � � � � Lunch time in the Philosophy Department.

The life of a philosopher consists of alternate periods of eating and thinking.

(This is something of an abstraction, even for philosophers, but the other activities

are irrelevant here.) When a philosopher gets hungry, she tries to acquire her left

and right fork, one at a time, in either order. If successful in acquiring two forks,

she eats for a while, then puts down the forks and continues to think. The key

question is: Can you write a program for each philosopher that does what it is sup-

posed to do and never gets stuck? (It has been pointed out that the two-fork

requirement is somewhat artificial; perhaps we should switch from Italian to

Chinese food, substituting rice for spaghetti and chopsticks for forks.)

Figure 2-17 shows the obvious solution. The procedure take fork waits until

the specified fork is available and then seizes it. Unfortunately, the obvious solu-

tion is wrong. Suppose that all five philosophers take their left forks simultane-

ously. None will be able to take their right forks, and there will be a deadlock.

We could modify the program so that after taking the left fork, the program

checks to see if the right fork is available. If it is not, the philosopher puts down

the left one, waits for some time, and then repeats the whole process. This propo-

sal too, fails, although for a different reason. With a little bit of bad luck, all the

philosophers could start the algorithm simultaneously, picking up their left forks,

seeing that their right forks were not available, putting down their left forks, wait-

ing, picking up their left forks again simultaneously, and so on, forever. A situa-

tion like this, in which all the programs continue to run indefinitely but fail to

make any progress is called � � � � � � � �
 � . (It is called starvation even when the
problem does not occur in an Italian or a Chinese restaurant.)

Now you might think, ‘‘If the philosophers would just wait a random time

instead of the same time after failing to acquire the right-hand fork, the chance

Copyright ©: University of Illinois CS 241 Staff 9

� � PROCESSES CHAP. 2

� �
 � � 	 � � � � � Lunch time in the Philosophy Department.

The life of a philosopher consists of alternate periods of eating and thinking.

(This is something of an abstraction, even for philosophers, but the other activities

are irrelevant here.) When a philosopher gets hungry, she tries to acquire her left

and right fork, one at a time, in either order. If successful in acquiring two forks,

she eats for a while, then puts down the forks and continues to think. The key

question is: Can you write a program for each philosopher that does what it is sup-

posed to do and never gets stuck? (It has been pointed out that the two-fork

requirement is somewhat artificial; perhaps we should switch from Italian to

Chinese food, substituting rice for spaghetti and chopsticks for forks.)

Figure 2-17 shows the obvious solution. The procedure take fork waits until

the specified fork is available and then seizes it. Unfortunately, the obvious solu-

tion is wrong. Suppose that all five philosophers take their left forks simultane-

ously. None will be able to take their right forks, and there will be a deadlock.

We could modify the program so that after taking the left fork, the program

checks to see if the right fork is available. If it is not, the philosopher puts down

the left one, waits for some time, and then repeats the whole process. This propo-

sal too, fails, although for a different reason. With a little bit of bad luck, all the

philosophers could start the algorithm simultaneously, picking up their left forks,

seeing that their right forks were not available, putting down their left forks, wait-

ing, picking up their left forks again simultaneously, and so on, forever. A situa-

tion like this, in which all the programs continue to run indefinitely but fail to

make any progress is called � � � � � � � �
 � . (It is called starvation even when the
problem does not occur in an Italian or a Chinese restaurant.)

Now you might think, ‘‘If the philosophers would just wait a random time

instead of the same time after failing to acquire the right-hand fork, the chance

4. Dining Philosophers: an
intellectual game

(John Stuart Mill,
of his own free will,
On half a pint of shandy
was particularly ill...)

Kravets

Copyright ©: University of Illinois CS 241 Staff 10

A non-solution to the dining philosophers problem
 Deadlock: everyone picks up their left fork first,

then waits for right fork…
[From Tanenbaum, Modern Operating Systems]

SEC. 2.3 CLASSICAL IPC PROBLEMS 77

#define N 5 /* number of philosophers */

void philosopher(int i) /* i: philosopher number, from 0 to 4 */
{
while (TRUE) {

think(); /* philosopher is thinking */
take fork(i); /* take left fork */
take fork((i+1) % N); /* take right fork; % is modulo operator */
eat(); /* yum-yum, spaghetti */
put fork(i); /* put left fork back on the table */
put fork((i+1) % N); /* put right fork back on the table */

}
}

Figure 2-17. A nonsolution to the dining philosophers problem.

that everything would continue in lockstep for even an hour is very small.’’ This

observation is true, but in some applications one would prefer a solution that

always works and cannot fail due to an unlikely series of random numbers.

(Think about safety control in a nuclear power plant.)

One improvement to Fig. 2-17 that has no deadlock and no starvation is to

protect the five statements following the call to think by a binary semaphore.

Before starting to acquire forks, a philosopher would do a DOWN on mutex. After

replacing the forks, she would do an UP on mutex. From a theoretical viewpoint,

this solution is adequate. From a practical one, it has a performance bug: only one

philosopher can be eating at any instant. With five forks available, we should be

able to allow two philosophers to eat at the same time.

The solution presented in Fig. 2-18 is correct and also allows the maximum

parallelism for an arbitrary number of philosophers. It uses an array, state, to

keep track of whether a philosopher is eating, thinking, or hungry (trying to

acquire forks). A philosopher may move only into eating state if neither neighbor

is eating. Philosopher i’s neighbors are defined by the macros LEFT and RIGHT.

In other words, if i is 2, LEFT is 1 and RIGHT is 3.

The program uses an array of semaphores, one per philosopher, so hungry

philosophers can block if the needed forks are busy. Note that each process runs

the procedure philosopher as its main code, but the other procedures, take forks,

put forks, and test are ordinary procedures and not separate processes.

2.3.2 The Readers and Writers Problem

The dining philosophers problem is useful for modeling processes that are

competing for exclusive access to a limited number of resources, such as I/O

devices. Another famous problem is the readers and writers problem (Courtois et

al., 1971), which models access to a data base. Imagine, for example, an airline

Does this solve the problem?

Copyright ©: University of Illinois CS 241 Staff 11

Necessary and sufficient
conditions for deadlock

 Mutual exclusion
 Hold and wait
 No preemption
 Circular wait

 Dining Philosophers has all four of
these properties.

Copyright ©: University of Illinois CS 241 Staff 12

 Mutual exclusion: Exclusive use of
chopsticks

 Hold and wait: Hold 1 chopstick, wait for
next

 No preemption: cannot force another to
release held resource

 Circular wait: Each waits for next neighbor
to put down chopstick

Necessary and sufficient
conditions for deadlock

Copyright ©: University of Illinois CS 241 Staff 13
[From Tanenbaum, Modern Operating Systems]

78 PROCESSES CHAP. 2

#define N 5 /* number of philosophers */
#define LEFT (i-1)%N /* number of i’s left neighbor */
#define RIGHT (i+1)%N /* number of i’s right neighbor */
#define THINKING 0 /* philosopher is thinking */
#define HUNGRY 1 /* philosopher is trying to get forks */
#define EATING 2 /* philosopher is eating */

typedef int semaphore; /* semaphores are a special kind of int */
int state[N]; /* array to keep track of everyone’s state */
semaphore mutex = 1; /* mutual exclusion for critical regions */
semaphore s[N]; /* one semaphore per philosopher */

void philosopher(int i) /* i: philosopher number, from 0 to N-1 */
{
while (TRUE) { /* repeat forever */

think(); /* philosopher is thinking */
take forks(i); /* acquire two forks or block */
eat(); /* yum-yum, spaghetti */
put forks(i); /* put both forks back on table */

}
}

void take forks(int i) /* i: philosopher number, from 0 to N-1 */
{
down(&mutex); /* enter critical region */
state[i] = HUNGRY; /* record fact that philosopher i is hungry */
test(i); /* try to acquire 2 forks */
up(&mutex); /* exit critical region */
down(&s[i]); /* block if forks were not acquired */
}

void put forks(i) /* i: philosopher number, from 0 to N-1 */
{
down(&mutex); /* enter critical region */
state[i] = THINKING; /* philosopher has finished eating */
test(LEFT); /* see if left neighbor can now eat */
test(RIGHT); /* see if right neighbor can now eat */
up(&mutex); /* exit critical region */
}

void test(i) /* i: philosopher number, from 0 to N-1 */
{
if (state[i] == HUNGRY && state[LEFT] != EATING && state[RIGHT] != EATING) {

state[i] = EATING;
up(&s[i]);

}
}

Figure 2-18. A solution to the dining philosopher’s problem.

Dining Philosophers solution

Copyright ©: University of Illinois CS 241 Staff 14
[From Tanenbaum, Modern Operating Systems]

78 PROCESSES CHAP. 2

#define N 5 /* number of philosophers */
#define LEFT (i-1)%N /* number of i’s left neighbor */
#define RIGHT (i+1)%N /* number of i’s right neighbor */
#define THINKING 0 /* philosopher is thinking */
#define HUNGRY 1 /* philosopher is trying to get forks */
#define EATING 2 /* philosopher is eating */

typedef int semaphore; /* semaphores are a special kind of int */
int state[N]; /* array to keep track of everyone’s state */
semaphore mutex = 1; /* mutual exclusion for critical regions */
semaphore s[N]; /* one semaphore per philosopher */

void philosopher(int i) /* i: philosopher number, from 0 to N-1 */
{
while (TRUE) { /* repeat forever */

think(); /* philosopher is thinking */
take forks(i); /* acquire two forks or block */
eat(); /* yum-yum, spaghetti */
put forks(i); /* put both forks back on table */

}
}

void take forks(int i) /* i: philosopher number, from 0 to N-1 */
{
down(&mutex); /* enter critical region */
state[i] = HUNGRY; /* record fact that philosopher i is hungry */
test(i); /* try to acquire 2 forks */
up(&mutex); /* exit critical region */
down(&s[i]); /* block if forks were not acquired */
}

void put forks(i) /* i: philosopher number, from 0 to N-1 */
{
down(&mutex); /* enter critical region */
state[i] = THINKING; /* philosopher has finished eating */
test(LEFT); /* see if left neighbor can now eat */
test(RIGHT); /* see if right neighbor can now eat */
up(&mutex); /* exit critical region */
}

void test(i) /* i: philosopher number, from 0 to N-1 */
{
if (state[i] == HUNGRY && state[LEFT] != EATING && state[RIGHT] != EATING) {

state[i] = EATING;
up(&s[i]);

}
}

Figure 2-18. A solution to the dining philosopher’s problem.

Dining Philosophers solution

Copyright ©: University of Illinois CS 241 Staff 15

 Made picking up both left and right
chopsticks an atomic operation?
 That works (i.e., prevents deadlock)
 This is essentially what we just did!

 Or, N philosophers & N+1 chopsticks?
 That works too!

 And we’ll see another solution later...

What if...

Copyright ©: University of Illinois CS 241 Staff 16

Summary

Classical synchronization problems
 Producer-Consumer Problem
 Reader-Writer Problem
 Sleeping Barber’s Problem
 Dining Philosophers Problem

Copyright ©: University of Illinois CS 241 Staff 17Copyright ©: Nahrstedt, Angrave, Abdelzaher, Kravets, Gupta 1

Deadlocks

Copyright ©: University of Illinois CS 241 Staff 18

Deadlock

Copyright ©: University of Illinois CS 241 Staff 19

Deadlock Definition
 A process is deadlocked if it is waiting for an event

that will never occur.
 Typically, but not necessarily, more than one

process will be involved together in a deadlock
 Is deadlock the same as starvation (i.e.,

indefinitely postponed)?
 A process is indefinitely postponed if it is

delayed repeatedly over a long period of time
while the attention of the system is given to other
processes. (Logically the process may proceed
but the system never gives it the CPU.)

Copyright ©: University of Illinois CS 241 Staff 20

Necessary Conditions for Deadlock

 Mutual exclusion
 Processes claim exclusive control of the resources they require

 Hold-and-wait (a.k.a. wait-for) condition
 Processes hold resources already allocated to them while waiting for

additional resources
 No preemption condition

 Resources cannot be removed from the processes holding them until
used to completion

 Circular wait condition
 A circular chain of processes exists in which each process holds one

or more resources that are requested by the next process in the chain

Copyright ©: University of Illinois CS 241 Staff 21

 Mutual exclusion
 Exclusive use of chopsticks

 Hold and wait condition
 Hold 1 chopstick, wait for next

 No preemption condition
 Cannot force another to undo their hold

 Circular wait condition
 Each waits for next neighbor to put down

chopstick

Dining Philosophers had it all

Copyright ©: University of Illinois CS 241 Staff 22

Mutual Exclusion

 Processes claim exclusive control of the
resources they require

 How to break it?
 Grant non-exclusive access only
 (e.g., read-only)

Copyright ©: University of Illinois CS 241 Staff 23

Hold and Wait Condition
 Processes hold resources already allocated

to them while waiting for additional
resources

 How to break it?
 Allow processes to either access all its required

resources at once, or none of them

Copyright ©: University of Illinois CS 241 Staff 24

No Preemption Condition
 Resources cannot be removed from the

processes holding them until used to
completion

 How to break it?
 Allow processes to be pre-empted and forced to

abort themselves or release held resources

Copyright ©: University of Illinois CS 241 Staff 25

Circular Wait Condition

 A circular chain of processes exists in
which each process holds one or more
resources that are requested by the next
process in the chain

 How to break it?
 Allow processes to access resources only in

increasing order of resource id

Copyright ©: University of Illinois CS 241 Staff 26

Resource Allocation Graph

 Nodes
 Processes
 Resources

 Arcs
 From resource to process = resource assigned to

process
 From process to resource = process requests

(and is waiting for) resource

Copyright ©: University of Illinois CS 241 Staff 27

(a) resource R assigned to process A
(b) process B is requesting/waiting for resource S
(c) process C and D are in deadlock over resources

T and U

assign request

Resource Allocation Graph

If we use the trivial broken
“solution”...

void philosopher(i) {
 while true {
 take left fork;
 take right fork;
 eat();
 put left fork;
 put right fork;
 }
}

Copyright ©: University of Illinois CS 241 Staff

Dining Philosophers
resource allocation graph

28

� � PROCESSES CHAP. 2

� �
 � � 	 � � � � � Lunch time in the Philosophy Department.

The life of a philosopher consists of alternate periods of eating and thinking.

(This is something of an abstraction, even for philosophers, but the other activities

are irrelevant here.) When a philosopher gets hungry, she tries to acquire her left

and right fork, one at a time, in either order. If successful in acquiring two forks,

she eats for a while, then puts down the forks and continues to think. The key

question is: Can you write a program for each philosopher that does what it is sup-

posed to do and never gets stuck? (It has been pointed out that the two-fork

requirement is somewhat artificial; perhaps we should switch from Italian to

Chinese food, substituting rice for spaghetti and chopsticks for forks.)

Figure 2-17 shows the obvious solution. The procedure take fork waits until

the specified fork is available and then seizes it. Unfortunately, the obvious solu-

tion is wrong. Suppose that all five philosophers take their left forks simultane-

ously. None will be able to take their right forks, and there will be a deadlock.

We could modify the program so that after taking the left fork, the program

checks to see if the right fork is available. If it is not, the philosopher puts down

the left one, waits for some time, and then repeats the whole process. This propo-

sal too, fails, although for a different reason. With a little bit of bad luck, all the

philosophers could start the algorithm simultaneously, picking up their left forks,

seeing that their right forks were not available, putting down their left forks, wait-

ing, picking up their left forks again simultaneously, and so on, forever. A situa-

tion like this, in which all the programs continue to run indefinitely but fail to

make any progress is called � � � � � � � �
 � . (It is called starvation even when the
problem does not occur in an Italian or a Chinese restaurant.)

Now you might think, ‘‘If the philosophers would just wait a random time

instead of the same time after failing to acquire the right-hand fork, the chance

Kravets

Copyright ©: University of Illinois CS 241 Staff

Dining Philosophers
resource allocation graph

29

If we use the trivial broken
“solution”...

One node per philosopher
and per fork

1. Everyone tries to pick up
left fork (request edges)

Kravets

Copyright ©: University of Illinois CS 241 Staff

Dining Philosophers
resource allocation graph

30

If we use the trivial broken
“solution”...

One node per philosopher
and per fork

1. Everyone tries to pick up
left fork (request edges)

2. Everyone succeeds!
(request edges become
assignment edges)

3. Everyone tries to pick up
right fork (request edges)

4. Cycle => deadlock

Kravets

Copyright ©: University of Illinois CS 241 Staff

Summary

 Definition of deadlock
 4 conditions for deadlock to happen

 How to tell when circular wait condition
happens: cycle in resource allocation
graph

 Next time: How to deal with deadlock

31

