
Copyright ©: University of Illinois CS 241 Staff 1 1

Classical Synchronization
Problems

Copyright ©: University of Illinois CS 241 Staff 2

This lecture

 Goals:
 Introduce classical synchronization

problems
 Topics

 Producer-Consumer Problem
 Reader-Writer Problem
 Dining Philosophers Problem
 Sleeping Barber’s Problem

Copyright ©: University of Illinois CS 241 Staff

1. Producer-Consumer
 Chefs cook items and put them on a

conveyer belt
 Customers pick items off the belt

3corn clip art credit:
wikimedia User:Spedona

Copyright ©: University of Illinois CS 241 Staff 4

Producer-Consumer Problem

 Producers insert items
 Consumers remove items
 Shared bounded buffer

 Efficient implementation: circular buffer with
an insert and a removal pointer.

Chef = Producer
Customer = Consumer

Copyright ©: University of Illinois CS 241 Staff 5

Producer-Consumer

insertPtr

removePtr

Chef = Producer
Customer = Consumer

Copyright ©: University of Illinois CS 241 Staff 6

Producer-Consumer

insertPtr

removePtr

Chef = Producer
Customer = Consumer

Copyright ©: University of Illinois CS 241 Staff 7

Producer-Consumer

insertPtr

removePtr

Chef = Producer
Customer = Consumer

Copyright ©: University of Illinois CS 241 Staff 8

Producer-Consumer

insertPtr

removePtr

Chef = Producer
Customer = Consumer

Copyright ©: University of Illinois CS 241 Staff 9

Producer-Consumer

insertPtr

removePtr

Chef = Producer
Customer = Consumer

Copyright ©: University of Illinois CS 241 Staff 10

Producer-Consumer

insertPtr

removePtr

Chef = Producer
Customer = Consumer

Copyright ©: University of Illinois CS 241 Staff 11

Producer-Consumer

insertPtr

removePtr

Chef = Producer
Customer = Consumer

Copyright ©: University of Illinois CS 241 Staff 12

Producer-Consumer

insertPtr

removePtr

BUFFER FULL:
Producer must
be blocked!

Chef = Producer
Customer = Consumer

Copyright ©: University of Illinois CS 241 Staff 13

Producer-Consumer

insertPtrremovePtr

Chef = Producer
Customer = Consumer

Copyright ©: University of Illinois CS 241 Staff 14

Producer-Consumer

insertPtr

removePtr

Chef = Producer
Customer = Consumer

Copyright ©: University of Illinois CS 241 Staff 15

Producer-Consumer

insertPtr

removePtr

Chef = Producer
Customer = Consumer

Copyright ©: University of Illinois CS 241 Staff 16

Producer-Consumer

insertPtr

removePtr

Chef = Producer
Customer = Consumer

Copyright ©: University of Illinois CS 241 Staff 17

Producer-Consumer

insertPtr

removePtr

Chef = Producer
Customer = Consumer

Copyright ©: University of Illinois CS 241 Staff 18

Producer-Consumer

insertPtr

removePtr

Chef = Producer
Customer = Consumer

Copyright ©: University of Illinois CS 241 Staff 19

Producer-Consumer

insertPtr

removePtr

Chef = Producer
Customer = Consumer

Copyright ©: University of Illinois CS 241 Staff 20

Producer-Consumer

insertPtr
removePtr

BUFFER EMPTY:
Consumer must
be blocked!

Chef = Producer
Customer = Consumer

Copyright ©: University of Illinois CS 241 Staff 21

Producer-Consumer Problem

 Producer inserts items. Updates insertion
pointer.

 Consumer executes destructive reads on
the buffer. Updates removal pointer.

 Both update information about how full/
empty the buffer is.

 Solution should allow multiple producers
and consumers

Copyright ©: University of Illinois CS 241 Staff 22

Challenges

 Prevent buffer overflow
 Prevent buffer underflow
 Mutual exclusion when modifying the

buffer data structure

Copyright ©: University of Illinois CS 241 Staff 23

Solution

 Prevent overflow: block producer when full!
Counting semaphore to count #free slots
 0  block producer

 Prevent underflow: block consumer when
empty! Counting semaphore to count #items
in buffer
 0  block consumer

 Mutex to protect accesses to shared buffer &
pointers.

Copyright ©: University of Illinois CS 241 Staff 24

Solution

 Prevent overflow: block producer when full!
Counting semaphore to count #free slots
 0  block producer

 Prevent underflow: block consumer when
empty! Counting semaphore to count #items
in buffer
 0  block consumer

 Mutex to protect accesses to shared buffer &
pointers.

Copyright ©: University of Illinois CS 241 Staff 25

Assembling the solution

 sem_wait(slots), sem_signal(slots)
 sem_wait(items), sem_signal(items)
 mutex_lock(m), mutex_unlock(m)

 insertptr = (insertptr+1) % N
 removalptr = (removalptr+1) % N

 Initialize semaphore slots to size of buffer
 Initialize semaphore items to zero.

Copyright ©: University of Illinois CS 241 Staff 26

Pseudocode getItem()

 For consumer
 Error checking/EINTR handling not shown

sem_wait(items);
mutex_lock(mutex);
result = buffer[removePtr];
removePtr = (removePtr +1) % N;
mutex_unlock(mutex);
sem_signal(slots);

Copyright ©: University of Illinois CS 241 Staff 27

Pseudocode putItem(data)

 For producer
 Error checking/EINTR handling not shown

sem_wait(slots);
mutex_lock(mutex);
buffer[insertPtr] = data;
insertPtr = (insertPtr + 1) % N;
mutex_unlock(mutex);
sem_signal(items);

Copyright ©: University of Illinois CS 241 Staff 28

II. Reader-Writer Problem
 A reader: read data
 A writer: write data
 Rules:

 Multiple readers may read the data simultaneously
 Only one writer can write the data at any time
 A reader and a writer cannot access data simultaneously

 Locking table: whether any two can be in the critical
section simultaneously

Reader Writer

Reader OK No
Writer No No

Copyright ©: University of Illinois CS 241 Staff

Reader-writer solution

29

SEC. 2.3 CLASSICAL IPC PROBLEMS 79

reservation system, with many competing processes wishing to read and write it.

It is acceptable to have multiple processes reading the data base at the same time,

but if one process is updating (writing) the data base, no other processes may have

access to the data base, not even readers. The question is how do you program the

readers and the writers? One solution is shown in Fig. 2-19.

typedef int semaphore; /* use your imagination */
semaphore mutex = 1; /* controls access to ’rc’ */
semaphore db = 1; /* controls access to the data base */
int rc = 0; /* # of processes reading or wanting to */

void reader(void)
{
while (TRUE) { /* repeat forever */

down(&mutex); /* get exclusive access to ’rc’ */
rc = rc + 1; /* one reader more now */
if (rc == 1) down(&db); /* if this is the first reader ... */
up(&mutex); /* release exclusive access to ’rc’ */
read data base(); /* access the data */
down(&mutex); /* get exclusive access to ’rc’ */
rc = rc - 1; /* one reader fewer now */
if (rc == 0) up(&db); /* if this is the last reader ... */
up(&mutex); /* release exclusive access to ’rc’ */
use data read(); /* noncritical region */

}
}

void writer(void)
{
while (TRUE) { /* repeat forever */

think up data(); /* noncritical region */
down(&db); /* get exclusive access */
write data base(); /* update the data */
up(&db); /* release exclusive access */

}
}

Figure 2-19. A solution to the readers and writers problem.

In this solution, the first reader to get access to the data base does a DOWN on

the semaphore db. Subsequent readers merely increment a counter, rc. As

readers leave, they decrement the counter and the last one out does an UP on the

semaphore, allowing a blocked writer, if there is one, to get in.

The solution presented here implicitly contains a subtle decision that is worth

commenting on. Suppose that while a reader is using the data base, another

SEC. 2.3 CLASSICAL IPC PROBLEMS 79

reservation system, with many competing processes wishing to read and write it.

It is acceptable to have multiple processes reading the data base at the same time,

but if one process is updating (writing) the data base, no other processes may have

access to the data base, not even readers. The question is how do you program the

readers and the writers? One solution is shown in Fig. 2-19.

typedef int semaphore; /* use your imagination */
semaphore mutex = 1; /* controls access to ’rc’ */
semaphore db = 1; /* controls access to the data base */
int rc = 0; /* # of processes reading or wanting to */

void reader(void)
{
while (TRUE) { /* repeat forever */

down(&mutex); /* get exclusive access to ’rc’ */
rc = rc + 1; /* one reader more now */
if (rc == 1) down(&db); /* if this is the first reader ... */
up(&mutex); /* release exclusive access to ’rc’ */
read data base(); /* access the data */
down(&mutex); /* get exclusive access to ’rc’ */
rc = rc - 1; /* one reader fewer now */
if (rc == 0) up(&db); /* if this is the last reader ... */
up(&mutex); /* release exclusive access to ’rc’ */
use data read(); /* noncritical region */

}
}

void writer(void)
{
while (TRUE) { /* repeat forever */

think up data(); /* noncritical region */
down(&db); /* get exclusive access */
write data base(); /* update the data */
up(&db); /* release exclusive access */

}
}

Figure 2-19. A solution to the readers and writers problem.

In this solution, the first reader to get access to the data base does a DOWN on

the semaphore db. Subsequent readers merely increment a counter, rc. As

readers leave, they decrement the counter and the last one out does an UP on the

semaphore, allowing a blocked writer, if there is one, to get in.

The solution presented here implicitly contains a subtle decision that is worth

commenting on. Suppose that while a reader is using the data base, another

SEC. 2.3 CLASSICAL IPC PROBLEMS 79

reservation system, with many competing processes wishing to read and write it.

It is acceptable to have multiple processes reading the data base at the same time,

but if one process is updating (writing) the data base, no other processes may have

access to the data base, not even readers. The question is how do you program the

readers and the writers? One solution is shown in Fig. 2-19.

typedef int semaphore; /* use your imagination */
semaphore mutex = 1; /* controls access to ’rc’ */
semaphore db = 1; /* controls access to the data base */
int rc = 0; /* # of processes reading or wanting to */

void reader(void)
{
while (TRUE) { /* repeat forever */

down(&mutex); /* get exclusive access to ’rc’ */
rc = rc + 1; /* one reader more now */
if (rc == 1) down(&db); /* if this is the first reader ... */
up(&mutex); /* release exclusive access to ’rc’ */
read data base(); /* access the data */
down(&mutex); /* get exclusive access to ’rc’ */
rc = rc - 1; /* one reader fewer now */
if (rc == 0) up(&db); /* if this is the last reader ... */
up(&mutex); /* release exclusive access to ’rc’ */
use data read(); /* noncritical region */

}
}

void writer(void)
{
while (TRUE) { /* repeat forever */

think up data(); /* noncritical region */
down(&db); /* get exclusive access */
write data base(); /* update the data */
up(&db); /* release exclusive access */

}
}

Figure 2-19. A solution to the readers and writers problem.

In this solution, the first reader to get access to the data base does a DOWN on

the semaphore db. Subsequent readers merely increment a counter, rc. As

readers leave, they decrement the counter and the last one out does an UP on the

semaphore, allowing a blocked writer, if there is one, to get in.

The solution presented here implicitly contains a subtle decision that is worth

commenting on. Suppose that while a reader is using the data base, another

[From Tanenbaum, Modern Operating Systems]

Note:
down means semWait
up means semSignal

This solution can
starve the writer!

Copyright ©: University of Illinois CS 241 Staff

Better R-W solution idea

 Idea: serve requests in order
 once a writer requests access, any

entering readers have to block until the
writer is done

 Advantage?
 Disadvantage?

30

Copyright ©: University of Illinois CS 241 Staff 31

Summary

 Classic synchronization problems
 Producer-Consumer Problem
 Reader-Writer Problem

 Saved for next time:
 Sleeping Barber’s Problem
 Dining Philosophers Problem

