Classical Synchronization

Problems
o
T

Copyright ©: University of Illinois CS 241 Staff

[This lecture

Goals:

Introduce classical synchronization
problems

Topics
Producer-Consumer Problem
Reader-Writer Problem

Dining Philosophers Problem
Sleeping Barber’s Problem

Copyright ©: University of Illinois CS 241 Staff

[1 . Producer-Consumer

Chefs cook items and put them on a
conveyer belt

Customers pick items off the belt

Copyright ©: University of Illinois CS 241 Staff

[Producer-Consumer Problem

Chef = Producer
Customer = Consumer

Producers insert items

Consumers remove items
Shared bounded buffer

Efficient implementation: circular buffer with
an insert and a removal pointer.

Copyright ©: University of lllinois CS 241 Staff 4

Producer-Consumer

Chef = Producer
Customer = Consumer

removePtr

Copyright ©: University of Illinois CS 241 Staff 5

Producer-Consumer

Chef = Producer
Customer = Consumer

insertP

removePtr

Copyright ©: University of Illinois CS 241 Staff 6

Producer-Consumer

Chef = Producer
Customer = Consumer

insertPtr

removePtr

Copyright ©: University of lllinois CS 241 Staff 7

Producer-Consumer

Chef = Producer
Customer = Consumer

insertPtr

removePtr

Copyright ©: University of Illinois CS 241 Staff 8

Producer-Consumer

Chef = Producer
Customer = Consumer

insertPtr

removePtr

Copyright ©: University of Illinois CS 241 Staff

Producer-Consumer

Chef = Producer
Customer = Consumer

insertPtr

removePtr

Copyright ©: University of Illinois CS 241 Staff 10

Producer-Consumer

Chef = Producer
Customer = Consumer

insertPtr

removePtr

Copyright ©: University of Illinois CS 241 Staff "

Producer-Consumer

Chef = Producer
Customer = Consumer
BUFFER FULL.:
Producer must
be blocked!

insertPtr

removePtr

Copyright ©: University of Illinois CS 241 Staff 12

Producer-Consumer

Chef = Producer
Customer = Consumer

removePtr InsertPtr

Copyright ©: University of Illinois CS 241 Staff 13

Producer-Consumer

Chef = Producer
Customer = Consumer

removePtr

insertPtr

Copyright ©: University of Illinois CS 241 Staff 14

Producer-Consumer

Chef = Producer
Customer = Consumer

removePtr

insertPtr

Copyright ©: University of Illinois CS 241 Staff 15

Producer-Consumer

Chef = Producer
Customer = Consumer
remaovePtr

insertPtr

Copyright ©: University of Illinois CS 241 Staff 16

Producer-Consumer

Chef = Producer
Customer = Consumer
removePtr

insertPtr

Copyright ©: University of Illinois CS 241 Staff 17

Producer-Consumer

Chef = Producer
Customer = Consumer

emovePtr

insertPtr

Copyright ©: University of Illinois CS 241 Staff 18

Producer-Consumer

Chef = Producer
Customer = Consumer

removePtr

insertPtr

Copyright ©: University of Illinois CS 241 Staff 19

Producer-Consumer

Chef = Producer
Customer = Consumer
BUFFER EMPTY:
Consumer must
be blocked!

removePtr
insertPtr

Copyright ©: University of Illinois CS 241 Staff 20

[Producer-Consumer Problem

Producer inserts items. Updates insertion
pointer.

Consumer executes destructive reads on
the buffer. Updates removal pointer.

Both update information about how full/
empty the buffer is.

Solution should allow multiple producers
and consumers

Copyright ©: University of Illinois CS 241 Staff 21

[Challenges

Prevent buffer overflow
Prevent buffer underflow

Mutual exclusion when modifying the
buffer data structure

Copyright ©: University of Illinois CS 241 Staff 22

[Solution

= Prevent overflow: block producer when full!
Counting semaphore to count #free

© 0 -> block producer
= Prevent underflow: block consumer when

empty! Counting semaphore to count #
in buffer

© 0 -> block consumer
= Mutex to protect accesses to shared buffer &
pointers.

Copyright ©: University of lllinois CS 241 Staff 23

[Solution

= Prevent overflow: block producer when full!
Counting semaphore to count #free slots

© 0 -> block producer
= Prevent underflow: block consumer when

empty! Counting semaphore to count #items
in buffer

© 0 -> block consumer
= Mutex to protect accesses to shared buffer &
pointers.

Copyright ©: University of lllinois CS 241 Staff 24

Assembling the solution

sem_wait(slots), sem_signal(slots)
sem_wait(items), sem_signal(items)
mutex_lock(m), mutex_unlock(m)

insertptr = (insertptr+1) % N
removalptr = (removalptr+1) % N

Initialize semaphore slots to size of buffer
Initialize semaphore items to zero.

Copyright ©: University of Illinois CS 241 Staff 25

[Pseudocode getltem()

For consumer
Error checking/EINTR handling not shown

sem_wait(items);
mutex_lock(mutex);

result = buffer[removePtr |;
removePtr = (removePtr +1) % N;
mutex_unlock(mutex);
sem_signal(slots);

Copyright ©: University of Illinois CS 241 Staff 26

[Pseudocode putltem(data)

For producer
Error checking/EINTR handling not shown

sem_wait(slots);
mutex_lock(mutex);

buffer| insertPtr | = data;
insertPtr = (insertPtr + 1) % N;
mutex_unlock(mutex);
sem_signal(items);

Copyright ©: University of Illinois CS 241 Staff 27

ll. Reader-Writer Problem

A reader: read data
A writer: write data

Rules:

Multiple readers may read the data simultaneously
Only one writer can write the data at any time
A reader and a writer cannot access data simultaneously

Locking table: whether any two can be in the criticalfx

Shagespence

section simultaneously ' e
. Y
Reader| Writer (// | N
)
Reader| OK No S~
Writer No No

Reader-writer solution

semaphore mutex = 1;
semaphore db = 1;
int rc = 0;

void reader(void)

{

while (TRUE) {
down(&mutex);
rc=rc+ 1;
if (rc == 1) down(&db);
up(&mutex);
read_data_base();
down(&mutex);
rc=rc-1;
if (rc == 0) up(&db);
up(&mutex);
use_data_read();

Copyright ©: University of Illinois CS 241 Staff 29

Note:

down means semWalg l

/* controls access to ’r¢’ */
/* controls access to the data base */
/* # of processes reading or wanting to */

void writer(void)
{
while (TRUE) {
think_up_data();
down(&db);
write _data_base();
up(&db);

; This solution can
starve the writer!

up means semSignal

[Better R-W solution idea

ldea: serve requests in order

once a writer requests access, any
entering readers have to block until the
writer is done

Advantage”?
Disadvantage?

Copyright ©: University of Illinois CS 241 Staff 30

[Summary

Classic synchronization problems
Producer-Consumer Problem
Reader-Writer Problem

Saved for next time:

Sleeping Barber’s Problem
Dining Philosophers Problem

Copyright ©: University of Illinois CS 241 Staff

31

