Clarifications and Corrections

Response Time

o Time from job submission until it starts running
for the first time

Waiting Time
o Total time that the job Is not running but queued

Turnaround Time
o Time between job submission and completion

Copyright ©: University of lllinois CS 241 Staff

Semaphores, Mutexes and
Condition Variables

Copyright ©: University of lllinois CS 241 Staff

Synchronization Primatives

Counting Semaphores

o Permit a limited number of threads to execute a
section of the code

Mutexes

o Permit only one thread to execute a section of
the code

Condition Variables

o Communicate information about the state of
shared data

Copyright ©: University of lllinois CS 241 Staff

Counting Semaphores

Before entering critical semaphore s = 1;
section P, {

O semWait(s) while (1) {

o Waituntil value is > 0, semWait (s) ;

then decrement

After finishing critical
section
O semSignal (s)

<Critical Section>
semSignal (s) ;
<Other work>

o Increment value }

Implementation }

requirements

o semSignal and semWait
must be atomic

Copyright ©: University of lllinois CS 241 Staff

POSIX Semaphores

Data type
o Semaphore Is a variable of type sem t
o Include <semaphore.h>

Atomic Operations use pshared==0
int sem init(sem t *sem, int pshared,
unsigned value) ;

int sem destroy(sem t *sem);
int sem post(sem t *sem);
int sem trywait(sem t *sem);

int sem wait(sem t *sem);

Copyright ©: University of lllinois CS 241 Staff

Example: bank balance

» Shared variable: balance

= Protected by semaphore
when used In:
O decshared
= Decrements balance
O 1incshared
= Increments balance

Copyright ©: University of lllinois CS 241 Staff

Example: bank balance

#include <errno.h>
#include <semaphore.h>

static int balance = O0;

static sem t bal sem; PR
int initshared(int wval) {
if (sem init(&bal sem, 0, 1) == -1)
return -1; \\
balance = val; _
return O;

} value

Copyright ©: University of lllinois CS 241 Staff

Example: bank balance

int decshared() { int incshared () {
while (sem wait(&bal sem) while (sem wait(&bal sem)
== -1) == -1)
if (errno != EINTR) if (errno != EINTR)
return -1; return -1;
balance--; balance++;
return sem post(&bal sem); return sem post(&bal sem);

Which one is going first?

Copyright ©: University of lllinois CS 241 Staff

[Pthread Synchronization

Mutex

o Semaphore with maximum value 1

o Simple and efficient

o Locked: some thread holds the mutex
o Unlocked: no thread holds the mutex
O

When several threads compete
One wins

The rest block
O Queue of blocked threads

Copyright ©: University of lllinois CS 241 Staff

Mutex Variables

A typical sequence In the use of a mutex
Create and initialize a mutex variable
Several threads attempt to lock the mutex
Only one succeeds and now owns the mutex
The owner performs some set of actions

The owner unlocks the mutex

Another thread acquires the mutex and repeats
the process

o Finally the mutex is destroyed

O O O O O O

Copyright ©: University of lllinois CS 241 Staff

Creating a mutex

#include <pthread.h>

int int pthread mutex init(pthread mutex t
*mutex, const pthread mutexattr t *attr) ;

= Initialize a pthread mutex: the mutex is initially unlocked
= Returns
o 0onsuccess

o Error number on failure

= EAGAIN: The system lacked the necessary resources; ENOMEM: Insufficient
memory ; EPERM: Caller does not have privileges; EBUSY: An attempt to re-
initialise a mutex; EINVAL: The value specified by attr is invalid

= Parameters
o mutex: Target mutex
o attr:

» NULL: the default mutex attributes are used

= Non-NULL: initializes with specified attributes
Copyright ©: University of lllinois CS 241 Staff

Creating a mutex

Default attributes

o Use PTHREAD MUTEX INITIALIZER

Statically allocated

Equivalent to dynamic initialization by a call
to pthread mutex init () with parameter
attr specified as NULL

No error checks are performed

Copyright ©: University of lllinois CS 241 Staff

Destroying a mutex

#include <pthread.h>
int pthread mutex destroy(pthread mutex t

*mutex) ;
= Destroy a pthread mutex
= Returns

o 0 on success

o Error number on failure

= EBUSY: An attempt to re-initialise a mutex; EINVAL: The value specified by
attr is invalid

= Parameters
o mutex: Target mutex

Copyright ©: University of lllinois CS 241 Staff

Locking/unlocking a mutex

#include <pthread.h>
int pthread mutex lock (pthread mutex t *mutex);

int pthread mutex trylock (pthread mutex t
*mutex) ;

int pthread mutex unlock (pthread mutex t *mutex);
= Returns
o 0 on success

o Error number on failure

= EBUSY: already locked; EINVAL: Not an initialised mutex; EDEADLK: The
current thread already owns the mutex; EPERM: The current thread does not
own the mutex

Copyright ©: University of lllinois CS 241 Staff

Example

#include <pthread.h> int main (int argc, char *argv[]) {
#include <stdio.h> pthread t thread[2];
#include <stdlib.h>

pthread create(&thread[0], NULL,

static pthread mutex t my lock = mythread, (void *)O0);
PTHREAD MUTEX INITIALIZER;

pthread create(&thread[1], NULL,

void *mythread(void *ptr) { mythread, (void *)1);
long int 1i,3;
while (1) { getchar() ;

pthread mutex lock (&my lock) ;

for (i=0; i<10; i++) {
printf ("Thread %d\n", int) ptr);
for (j=0; 3j<50000000; j++);

}

pthread mutex unlock (&my lock);
for (j=0; j<50000000; j++);
}

} Copyright ©: University of lllinois CS 241 Staff

Condition Variables

Used to communicate information about the
state of shared data

o Execution of code depends on the state of

A data structure or
Another running thread

Allows threads to synchronize based upon
the actual value of data

Without condition variables

o Threads continually poll to check if the condition
IS met

Copyright ©: University of lllinois CS 241 Staff

Condition Variables

Signaling, not mutual exclusion

o A mutex is needed to synchronize access to the
shared data

Each condition variable i1s associated with a
single mutex

o Wait atomically unlocks the mutex and blocks
the thread

o Signal awakens a blocked thread

Copyright ©: University of lllinois CS 241 Staff

Creating a Condition Variable

Similar to pthread mutexes

int pthread cond init(pthread cond t *cond, const
pthread condattr t *attr);

int pthread cond destroy(pthread cond t *cond);

pthread cond t cond = PTHREAD COND INITIALIZER;

Copyright ©: University of lllinois CS 241 Staff

Using a Condition Variable

Waiting
o Block on a condition variable.
o Called with mutex locked by the calling thread

o Atomically release the mutex and cause the
calling thread to block on the condition variable

o On return, mutex is locked again

int pthread cond wait(pthread cond t *cond,
pthread mutex t *mutex);

int pthread cond timedwait (pthread cond t *cond,
pthread mutex t *mutex, const struct timespec
*abstime) ;

Copyright ©: University of lllinois CS 241 Staff

Using a Condition Variable

Signaling
int pthread cond signal (pthread cond t *cond) ;
unblocks at least one of the blocked threads
int pthread cond broadcast (pthread cond t *cond);
unblocks all of the blocked threads

Copyright ©: University of lllinois CS 241 Staff

Using a Condition Variable:
Challenges

Call pthread cond signal () before calling
pthread cond wait()

o Logical error

Fail to lock the mutex before calling
pthread cond wait()

o May cause it NOT to block

Fail to unlock the mutex after calling
pthread cond signal ()

o May not allow a matching pthread cond wait ()
routine to complete (it will remain blocked).

Copyright ©: University of lllinois CS 241 Staff

Condition Variable: Why do we
need the mutex?

pthread mutex lock (&mutex) ; /* lock mutex */
while ('predicate) { /* check predicate */
pthread cond wait (&condvar, &mutex) ;
/* go to sleep - recheck

pred on awakening */

}

pthread mutex unlock (&mutex) ; /* unlock mutex */

pthread mutex lock (&mutex) ; /* lock the mutex *x/
predicate=1; /* set the predicate */
pthread cond broadcast (&condvar) ; /* wake everyone up */
pthread mutex unlock (&mutex) ; /* unlock the mutex *x/

Copyright ©: University of lllinois CS 241 Staff

Condition Variable: Why do we

need the mutex?

@

| -

ég pthread mutex lock (&mutex) ; /*
%) while (!predicate) { /*
c pthread mutex unlock (&mutex); /*
i) P pthread cond wait (&condvar) ; /*
O

o

o pthread mutex lock (&mutex) ; /*
ég }

— pthread mutex unlock (&mutex) ; /*

——— What can happen here?

pthread mutex lock (&mutex) ; /*
. 5 *
Another thread might acquire the ;*

mutex, set the predicate, and issue the /%
broadcast before
pthread cond wait() gets called

lock mutex */
check predicate */
unlock mutex * /

go to sleep - recheck

pred on awakening */
lock mutex */
unlock mutex * /
lock the mutex */
set the predicate */
wake everyone up */
unlock the mutex * /

Copyright ©: University of lllinois CS 241 Staff

Condition Variable: Why do we
need the mutex?

Separating the condition variable from the mutex
o Thread goes to sleep when it shouldn't

o Problem

pthread mutex unlock () and pthread cond wait() are
not guaranteed to be atomic

Joining condition variable and mutex
o Callto pthread cond wait() unlocks the mutex

o UNIX kernel can guarantee that the calling thread will not
miss the broadcast

Copyright ©: University of lllinois CS 241 Staff

Example without Condition
Variables

int data_avail = 0;

pthread mutex t data mutex =
PTHREAD MUTEX INITIALIZER;

void *producer (void *) {

pthread mutex lock (&data mutex) ;
<Produce data>
<Insert data into queue;>

data_avail=1;

pthread mutex unlock (&data mutex) ;

Copyright ©: University of lllinois CS 241 Staff

Example without Condition
Variables

void *consumer (void *) {

while(!'data avail); /* do nothing */

pthread mutex lock (&data mutex) ;
<Extract data from queue;>
if (queue is empty)

data avail = 0;

pthread mutex unlock (&data mutex) ;

<Consume Data>

Copyright ©: University of lllinois CS 241 Staff

Example with Condition
Variables

int data _avail = 0;
pthread mutex t data mutex = PTHREAD MUTEX INITIALIZER;
pthread cont t data cond = PTHREAD COND INITIALIZER;

void *producer (void *) {
pthread mutex lock (&data mutex) ;
<Produce data>
<Insert data into queue;>
data avail = 1;

pthread cond signal (&data cond) ;

pthread mutex unlock (&data mutex) ;

Copyright ©: University of lllinois CS 241 Staff

Example with Condition
Variables

void *consumer (void *) {
pthread mutex lock (&data mutex) ;
while(!'data_avail) {

/* sleep on condition variable*/

pthread cond wait(&data cond, &data mutex) ;

}

/* woken up */

<Extract data from queue;>
if (queue is empty)
data avail = 0;
pthread mutex unlock (&data mutex) ;

<Consume Data>

Copyright ©: University of lllinois CS 241 Staff

More Complex Example

Master thread

o Spawns a number of concurrent slaves

o Waits until all of the slaves have finished to exit
o Tracks current number of slaves executing

A mutex IS assoclated with count and a
condition variable with the mutex

Copyright ©: University of lllinois CS 241 Staff

Example

#include <stdio.h>
#include <pthread.h>

#define NO_OF PROCS 4

typedef struct SharedType ({

int count; /* number of active slaves */
pthread mutex t lock; /* mutex for count */
pthread cond t done; /* sig. by finished slave */

} SharedType, *SharedType ptr;

SharedType ptr shared data;

Copyright ©: University of lllinois CS 241 Staff

Example: Main

main (int argc, char **argv) {

int res;

/* allocate shared data */

if ((sh_data = (SharedType ¥*)
malloc (sizeof (SharedType))) ==
NULL) {

exit(1);
}

sh data->count = 0;

/* allocate condition wvar */

if ((res =
pthread cond init(&sh_data-
>done, NULL)) !'= 0) {

exit (1) ;

/* allocate mutex */

if ((res =
pthread mutex init(&sh _data-
>lock, NULL)) !'= 0) {

exit (1) ;

/* generate number of slaves
to create */

srandom(0) ;
/* create up to 15 slaves */

master ((int) random() %16) ;

Copyright ©: University of lllinois CS 241 Staff

Example: Slave

void slave (void *shared) { /* done running */
int i, n; printf ("Slave finished %d
sh data = shared; cycles.\n", n);
printf (“Slave.\n", n);
n = random() % 1000; /* signal that you are done

working */
pthread cond signal (&sh _data-

for (1 = 0; i < n; i+= 1)
>done) ;

Sleep(10) ;

/* release mutex for shared
/* mutex for shared data */

data */
pthread mutex lock(&sh_data- pthread mutex unlock(&sh data-
>lock) ; >lock) ;

/* dec number of slaves */

sh data->count -= 1;

Copyright ©: University of lllinois CS 241 Staff

Example: Master

master (int nslaves) {

int 1i;

pthread mutex lock(&sh data-
>lock) ;

pthread t id;
for (i = 1; i <= nslaves; i +=
1) {

pthread mutex lock(&sh data-
>lock) ;

/* start slave and detach */

shared data->count += 1;

while (sh _data->count != 0)

pthread cond wait(&sh_data-
>done, &sh data->lock);

pthread mutex unlock(&sh data-
>lock) ;

pthread create(&id, NULL,
(void* (*) (void *))slave,
(void *)sh data);

pthread mutex unlock(&sh data-
>lock) ; }

printf ("All 3%d slaves have
finished.\n", nslaves) ;

pthread exit(0);

Copyright ©: University of lllinois CS 241 Staff

Semaphores vs. CVs

Semaphore Condition Variables
Integer value (>=0) No integer value
Wait does not always Wait always blocks
block
Signal either releases Signal either releases
thread or inc’s counter thread or is lost
If signal releases If signal releases
thread, both threads thread, only one of

continue afterwards them continue

Copyright ©: University of lllinois CS 241 Staff

Dining Philosophers

N philosophers and N forks
o Philosophers eat/think

o Eating needs 2 forks

o Pick one fork at a time

7

O) \) .
@egca%%égfﬁﬁécmﬁ%@j@re A fa e

Copyright ©: University of lllinois CS 241 Staff

