
Copyright ©: University of Illinois CS 241 Staff 1

Achieving Synchronization

Copyright ©: University of Illinois CS 241 Staff

Overview

 Last lecture
 Why do we need synchronization?
 Solution: Critical Regions

 This lecture: achieving synchronization
 Software-only synchronization
 Hardware support: test-and-set
 OS Support: sempahores

Copyright ©: University of Illinois CS 241 Staff

From last time...

3

Copyright ©: University of Illinois CS 241 Staff

Things going Horribly Wrong

4

Producer thread:

while (true) {
 Create new work W;
 Find tail of q;
 tail = W;
}

Consumer thread:

while (true) {
 work = head of q;
 remove head from q;
 do_work(work);
}

q.head
work throw candy

at random
student

next NULL

0

2
1

1
work eat bagel
next NULL

3

5
4

NULL4

X

6

X 6

I’ll never get to eat my bagel. :-(
(Could something worse happen?)

Copyright ©: University of Illinois CS 241 Staff

A simpler example

 We just saw that processes / threads
can be preempted at arbitrary times.
 The previous example might work, or not.

 What if we just use simple operations?

5

Thread 1:

x++;

Thread 2:

x++;

Shared state:

int x=0;

Are we safe now?

Copyright ©: University of Illinois CS 241 Staff

This could happen...

6

Thread 1 Thread 2 r1 r2 x
r1 = x 0 0

r1 = r1+1 1 0

x = r1 1 1

r2 = x 1 1

r2 = r2+1 2 1

x = r2 2 2

Copyright ©: University of Illinois CS 241 Staff

But this could happen too!

7

Thread 1 Thread 2 r1 r2 x
r1 = x 0 0

r1 = r1+1 1 0

r2 = x 1 0 0

r2 = r2+1 1 1 0

x = r1 1 1 1

x = r2 1 1 1

Race condition: results depend on timing!

Copyright ©: University of Illinois CS 241 Staff

Introducing: Critical Region
(Critical Section)

Process {
 ...
 ENTER CRITICAL REGION
 Access shared variables;
 LEAVE CRITICAL REGION
 ...
}

Copyright ©: University of Illinois CS 241 Staff

Critical Region Requirements

 Mutual Exclusion
 Progress
 Bounded Wait

Copyright ©: University of Illinois CS 241 Staff

ProgressMutual ExclusionBounded Wait

Copyright ©: University of Illinois CS 241 Staff

Can’t wait
forever!

ProgressMutual ExclusionBounded Wait

Copyright ©: University of Illinois CS 241 Staff

Are there door
locks?

Can’t wait
forever!

ProgressMutual ExclusionBounded Wait

Copyright ©: University of Illinois CS 241 Staff

Are there door
locks?

Well, Did you
see anybody

go in?
Can’t wait
forever!

ProgressMutual ExclusionBounded Wait

Copyright ©: University of Illinois CS 241 Staff

Mutual exclusion using
Critical Regions

Process A

Process B

A enters critical region A leaves critical region

B attempts to
enter critical
region

B enters
critical
region

B leaves
critical
region

T1 T2 T3 T4

B is blocked

Copyright ©: University of Illinois CS 241 Staff

How to implement a
critical region

15

Copyright ©: University of Illinois CS 241 Staff

Mutual Exclusion solutions

 Software-only candidate solutions (Two-Process
Solutions)
 Lock Variables
 Turn Mutual Exclusion
 Other Flag Mutual Exclusion
 Two Flag Mutual Exclusion
 Two Flag and Turn Mutual Exclusion

 Hardware solutions
 Disabling Interrupts; Test-and-set; Swap (Exchange)

 Semaphores

Copyright ©: University of Illinois CS 241 Staff

Lock Variables

...
while (lock) {
 /* spin spin spin spin */
}
lock = 1;
/* Entering critical section */
access shared variable;
/* Leaving critical section */
lock = 0;
...

Problem: Multiple
processes could
concurrently
proceed past the
while (lock)
statement and
violate mutual
exclusion.

Copyright ©: University of Illinois CS 241 Staff

Turn-based Mutual Exclusion
with Strict Alternation

…
while (turn != my_process_id) {
 /* wait your turn */
}
access shared variables;
turn = other_process_id;

…

Problem: If the other
process is not
interested in CS, this
process cannot make
progress.

Copyright ©: University of Illinois CS 241 Staff

Other Flag Mutual Exclusion

int owner[2] = {false, false};
…
while (owner[other_process_id]) {
 /* wait your turn */
}
owner[my_process_id] = true;
access shared variables;
owner[my_process_id] = false;
…

Problem: No
mutual exclusion
– both processes
can proceed past
while() statement
and into CS.

Copyright ©: University of Illinois CS 241 Staff

Two Flag Mutual Exclusion

int owner[2] = {false, false};
…
owner[my_process_id] = true;
while (owner[other_process_id]) {
 /* wait your turn */
}
access shared variables;
owner[my_process_id] = false;
…

Problem:
Could deadlock

Copyright ©: University of Illinois CS 241 Staff

Two Flag and Turn Mutual
Exclusion

int owner[2]={false, false};
int turn;

…
owner[my_process_id] = true;
turn = other_process_id;

while (owner[other_process_id] and
 turn == other_process_id) {

 /* wait your turn */
}
access shared variables;

owner[my_process_id] = false;
… Peterson’s Solution

Copyright ©: University of Illinois CS 241 Staff

Discussion

 In uni-processors
 Concurrent processes cannot be overlapped, only interleaved
 A process runs until it invokes a system call, or is interrupted
 To guarantee mutual exclusion, hardware support could help

by allowing the disabling of interrupts
while(true) {
 /* disable interrupts */
 /* critical section */
 /* enable interrupts */
 /* remainder */
}

 What’s the problem with this solution?

Copyright ©: University of Illinois CS 241 Staff

Discussion

 In multi-processors
 Several processors share memory
 Processors behave independently in a peer relationship
 Interrupt disabling will not work
 We need hardware support where access to a memory

location excludes any other access to that same location
 The hardware support is based on execution of multiple

instructions atomically (test and set)

Copyright ©: University of Illinois CS 241 Staff

On to hardware-assisted
solutions...

Copyright ©: University of Illinois CS 241 Staff

Test and Set Instruction

boolean Test_And_Set(boolean* lock) {
 atomic {
 boolean initial;
 initial = *lock;
 *lock = true;
 return initial;
 }
}

Note: this is more accurate
than the textbook version

atomic = executed in a single shot
 without any interruption

Copyright ©: University of Illinois CS 241 Staff

Using Test_And_Set for
Mutual Exclusion

Pi {

 while(1) {
 while(Test_And_Set(lock)) {
 /* busy-wait */
 }
 ... Critical Section ...
 lock = 0;
 ... Other work ...
 }
}

void main () {
 lock = 0;
 parbegin(P1,…,Pn);

}

Clean, simple, and works, but has performance loss
because of busy waiting.

Copyright ©: University of Illinois CS 241 Staff

Semaphores

 Fundamental principle:
 Two or more processes want to

cooperate by means of simple signals
 Special variable type: semaphore

 A special kind of “int” variable
 Can’t just modify or set or increment or

decrement it

Copyright ©: University of Illinois CS 241 Staff

Semaphores

 Before entering critical section
 semWait(s)

 receive signal via semaphore s
 “down” on the semaphore
 Executed

 After finishing critical section
 semSignal(s)

 transmit signal via semaphore s
 “up” on the semaphore

 Implementation requirements
 semSignal and semWait must be atomic

Copyright ©: University of Illinois CS 241 Staff

Semaphores

 Different notation can be used
 semSignal

 V - verhogen (“increment”)
 signal
 up

 semWait
 P - proberen (“test”)
 wait
 down

Copyright ©: University of Illinois CS 241 Staff

Semaphores vs. Test_and_Set
Semaphore
semaphore s = 1;
Pi {
 while(1) {
 semWait(s);
 ... Critical Section ...
 semSignal(s);
 ... other work...
 }
}

Test_and_Set
lock = 0;

Pi {

 while(1) {
 while(Test_And_Set(lock))
 { /* busy-wait */ }
 ... Critical Section ...
 lock = 0;
 ... Other work ...
 }
}

Copyright ©: University of Illinois CS 241 Staff

Inside a Semaphore

 Avoid busy waiting by
suspending
 Block if s == False
 Wakeup on signal

(s == True)

 Multiple process
waiting on s
 Keep a list of blocked

processes
 Wake up one of the

blocked processes
upon getting a signal

 Semaphore data structure
typedef struct {
 int count;
 queueType queue;
 /* queue for processes
 waiting on s */
} SEMAPHORE;

Copyright ©: University of Illinois CS 241 Staff

Inside a Semaphore
typedef struct {
 int count;
 queueType queue;

} SEMAPHORE;

void semSignal(semaphore s) {
 s.count++;
 if (s.count ≤ 0) {
 remove P from s.queue;
 place P on ready list;
 }
}

void semWait(semaphore s) {
 s.count--;
 if (s.count < 0) {
 place P in s.queue;
 block P;
 }
}

semSignal and semWait
must be atomic. (Q: how can we
implement that?)

Copyright ©: University of Illinois CS 241 Staff

Binary Semaphores
typedef struct bsemaphore {
 enum {0,1} value;
 queueType queue;

 } BSEMAPHORE;

void semSignalB(bsemaphore s){
 if (s.queue is empty())
 s.value = 1;
 else {
 remove P from s.queue;
 place P on ready list;
 }
}

void semWaitB(bsemaphore s) {
 if (s.value == 1)
 s.value = 0;
 else {
 place P in s.queue;
 block P;
 }
}

Copyright ©: University of Illinois CS 241 Staff

Mutual Exclusion Using
Semaphores

semaphore s = 1;
Pi {

 while(1) {
 semWait(s);
 ... Critical Section ...

 semSignal(s);
 ... Other work ...

 }
}

Copyright ©: University of Illinois CS 241 Staff

Value of
Semaphore

lock

Queue A

semWait(lock)

0

1

semWait(lock)

B

-1
semSignal(lock)

0
semSignal(lock)

1

Process Process Critical Region

Normal Execution

Blocked on
semaphore
lock

B

Copyright ©: University of Illinois CS 241 Staff

Summary

 Software-based mutual exclusion
 Tricky
 Busy-waiting

 Hardware solution: test-and-set
 Simpler, cleaner, but still busy-waits

 Semaphores
 Next time: Using semaphores; other

solutions
36

