Introduction to Synchronization

OLU®

Copyright ©: University of lllinois CS 241 Staft



[Overview

Introduction to synchronization

Why do we need synchronization?
Solution: Critical Regions

How to implement a Critical Region
inconveniently

Copyright ©: University of Illinois CS 241 Staff




[What could go horribly wrong?

Shared state:

queue t q;
Producer thread: Consumer thread:
while (true) { while (true) {
Create new work W; work = head of qg;
Find tail of q; remove head from q;

tail = W; do work (work) ;

} }

Copyright ©: University of Illinois CS 241 Staff 3




Things going Horribly Wrong

Producer thread: Consumer thread:
while (true) { while (true) {
(1) Create new work W; (3) work = head of q;
(2) Find tail of q; (4) remove head from q;
(6) tail = W; (5) do_work (work) ;
} }
@NULL -

I'll never get to eat my bagel. :-(
(Could something worse happen?)

Copyright ©: University of Illinois CS 241 Staff 4




[A simpler example ]

= We just saw that processes / threads
can be preempted at arbitrary times.

© The previous example might work, or not.
= What if we just use simple operations?

Shared state: Thread 1: Thread 2:

int x=0; x++; X++;

Copyright ©: University of Illinois CS 241 Staff




[How IS x++ Implemented?

registerl = x
registerl = registerl + 1
X = registerl

Copyright ©: University of Illinois CS 241 Staff



[This could happen... ]

Thread 1 Thread 2
rl = x
rl = rl+l
x =rl
r2 = x
r2 = r2+l1
X = r2

Copyright ©: University of Illinois CS 241 Staff



[But this could happen too!

Thread 1 Thread 2 rl r2 |x
rl = x 0 0
rl = rl+l 1 0
r2 = x 1 0 0
r2 = r2+l 1 (1 |0
x =rl 1 (1 |1

Copyright ©: University of Illinois CS 241 Staff 8



Introducing: Critical Region
[(Critical Section)

Process {

Access shared wvariables;

Copyright ©: University of Illinois CS 241 Staff



Introducing: Critical Region
[(Critical Section)

Process {

Access shared wvariables;

Copyright ©: University of Illinois CS 241 Staff



[Critical Region Requirements

Mutual Exclusion
Progress @-i @ 5.9
Bounded Wait

Copyright ©: University of Illinois CS 241 Staff



[Critical Region Requirements

Mutual Exclusion:

while a process is in it

Progress:

If no process is waiting in its critical
section and several processes are trying
to get into their critical section, then

Copyright ©: University of Illinois CS 241 Staff




[Critical Region Requirements ]

= Bounded Wait:

© A process requesting entry to a critical
section should only have to wait for a
bounded number of other processes to
enter and leave the critical section

Copyright ©: University of Illinois CS 241 Staff



Summary

Synchronization is important for correct
multi-threading programs

Race conditions
Critical regions

What's next: protecting critical regions
Software-only approaches
Semaphores
Other hardware solutions

Copyright ©: University of Illinois CS 241 Staff



