
Copyright ©: University of Illinois CS 241 Staff 1

Introduction to Synchronization

Copyright ©: University of Illinois CS 241 Staff

Overview

 Introduction to synchronization

 Why do we need synchronization?

 Solution: Critical Regions

 How to implement a Critical Region
inconveniently

Copyright ©: University of Illinois CS 241 Staff

What could go horribly wrong?

3

Shared state:

queue_t q; /* to do list */

Producer thread:

while (true) {
 Create new work W;
 Find tail of q;
 tail = W;
}

Consumer thread:

while (true) {
 work = head of q;
 remove head from q;
 do_work(work);
}

Copyright ©: University of Illinois CS 241 Staff

Things going Horribly Wrong

4

Producer thread:

while (true) {
 Create new work W;
 Find tail of q;
 tail = W;
}

Consumer thread:

while (true) {
 work = head of q;
 remove head from q;
 do_work(work);
}

q.head
work throw candy

at random
student

next NULL

0

2
1

1
work eat bagel
next NULL

3

5
4

NULL4

X

6

X 6

I’ll never get to eat my bagel. :-(
(Could something worse happen?)

Copyright ©: University of Illinois CS 241 Staff

A simpler example

 We just saw that processes / threads
can be preempted at arbitrary times.
 The previous example might work, or not.

 What if we just use simple operations?

5

Thread 1:

x++;

Thread 2:

x++;

Shared state:

int x=0;

Are we safe now?

Copyright ©: University of Illinois CS 241 Staff

How is x++ implemented?

 register1 = x
 register1 = register1 + 1
 x = register1

6

Copyright ©: University of Illinois CS 241 Staff

This could happen...

7

Thread 1 Thread 2 r1 r2 x
r1 = x 0 0

r1 = r1+1 1 0

x = r1 1 1

r2 = x 1 1

r2 = r2+1 2 1

x = r2 2 2

Copyright ©: University of Illinois CS 241 Staff

But this could happen too!

8

Thread 1 Thread 2 r1 r2 x
r1 = x 0 0

r1 = r1+1 1 0

r2 = x 1 0 0

r2 = r2+1 1 1 0

x = r1 1 1 1

x = r2 1 1 1

Copyright ©: University of Illinois CS 241 Staff

Introducing: Critical Region
(Critical Section)

Process {
 ...

 Access shared variables;

 ...
}

Copyright ©: University of Illinois CS 241 Staff

Introducing: Critical Region
(Critical Section)

Process {
 ...
 ENTER CRITICAL REGION
 Access shared variables;
 LEAVE CRITICAL REGION
 ...
}

Copyright ©: University of Illinois CS 241 Staff

Critical Region Requirements

 Mutual Exclusion
 Progress
 Bounded Wait

Copyright ©: University of Illinois CS 241 Staff

Critical Region Requirements

 Mutual Exclusion:
 No other process must execute within the

critical section while a process is in it
 Progress:

 If no process is waiting in its critical
section and several processes are trying
to get into their critical section, then entry
to the critical section cannot be
postponed indefinitely

Copyright ©: University of Illinois CS 241 Staff

Critical Region Requirements

 Bounded Wait:
 A process requesting entry to a critical

section should only have to wait for a
bounded number of other processes to
enter and leave the critical section

Must ensure these requirements without
assumptions about number of CPUs,
speeds of the threads, or scheduling!

Copyright ©: University of Illinois CS 241 Staff

Summary

 Synchronization is important for correct
multi-threading programs
 Race conditions

 Critical regions
 What’s next: protecting critical regions

 Software-only approaches
 Semaphores
 Other hardware solutions

