Threads Systems Concepts

Copyright ©: University of Illinois CS 241 Staff

[Review: Why Threads?

Processes do not share resources very well
o Why?

Process context switching cost is very high
o Why?

|

Threads: light-weight processes

Copyright ©: University of Illinois CS 241 Staff

[Benefits of Threads

Takes less time
o To create a new thread
o To terminate a thread

o To switch between two threads

Inter-thread communication without
Invoking the kernel

Copyright ©: University of Illinois CS 241 Staff

[We like our Threads ...

Foreground and background work
Asynchronous processing

Speed of execution

Modular program structure

Copyright ©: University of Illinois CS 241 Staff

Threads: Lightweight
Processes

Process 1 Process 1 Process 1 Process
\ | | I
)
O
S \ l’
8 \\
) User y
= space
c
e
g Thread execution Thread
=
Kernel
UCJ space { Kernel Kernel

(a) (b)
Three processes each with one thread

One process with three threads

Copyright ©: University of Illinois CS 241 Staff

[Tasks Suitable for Threading

Has multiple parallel sub-tasks

Some sub-tasks block for potentially
long walts

Some sub-tasks use many CPU cycles
Must respond to asynchronous events

Copyright ©: University of Illinois CS 241 Staff

[Questions

What are the similarities between processes
and threads?

What are the differences between processes
and threads?

Copyright ©: University of Illinois CS 241 Staff

[Thread Packages

Kernel thread packages

o Implemented and supported at kernel
level

User-level thread packages
o Implemented at user level

o Kernel perspective: everything Is a
single-threaded process

Copyright ©: University of Illinois CS 241 Staff

Threads in User Space (Old
Linux)

Process Thread

_/

[\

space 4

=
—
Kernel
space Kernel
X
Collection of Runi Thread P\ Keep track of threads in
procedures that Hn-Hme reA rfoCeSS brocess (analogous to
system table table

manages the
threads

kernel process table)

Copyright ©: University of Illinois CS 241 Staff 9]

User-level Threads

Advantages

o Fast Context Switching: keeps the OS out of it!

User level thread libraries do not require system calls
O No call to OS and no interrupts to kernel

thread_yield

O Save the thread information in the thread table

o Call the thread scheduler to pick another thread to run
Saving local thread state scheduling are local

procedures

O No trap to kernel, low context switch overhead, no memory
switch

o Customized Scheduling (at user level)

Copyright ©: University of Illinois CS 241 Staff

User-level Threads

Disadvantages

o What happens if one thread makes a blocking
/O call?

Change the system to be non-blocking
Always check to see if a system call will block

o What happens if one thread never yields?
Introduce clocked interrupts

o Multi-threaded programs frequently make
system calls
Causes a trap into the kernel anyway!

Copyright ©: University of Illinois CS 241 Staff

Kernel Threads

Process Thread Process Thread

\ __/
\

NER @@

|

Kernel
space { / Kernel E Kernel E

X /

/ ! / |
Run-time Thread Process Process Thread
system table table table table

User-level Threads Kernel-level Threads

Copyright ©: University of Illinois CS 241 Staff

Kernel-level Threads

Advantages

O

Kernel schedules threads in addition to
processes

Multiple threads of a process can run
simultaneously

Now what happens if one thread blocks on 1/0O?

Kernel-level threads can make blocking I/O calls
without blocking other threads of same process

Good for multicore architectures

Copyright ©: University of Illinois CS 241 Staff

[Kernel-level Threads

Disadvantages

O

Overhead in the kernel... extra data
structures, scheduling, etc.

Thread creation Is expensive
Have a pool of waiting threads

What happens when a multi-threaded
process calls fork () ?

Which thread should receive a signal?

Copyright ©: University of Illinois CS 241 Staff

[Trade-offs’?

Kernel thread packages
o Each thread can make blocking I/O calls

o Can run concurrently on multiple
pProcessors

Threads in User-level
o Fast context switch
o Customized scheduling

o No need for kernel support

Copyright ©: University of Illinois CS 241 Staff

Hybrid Implementations
(Solaris)

Multiple user threads
on a kernel thread

\ !

Ry

Kernel S 34— Kernel thread

> User
space

-/

Kernel
space

Multiplexing user-level threads onto kernel-level threads

Copyright ©: University of Illinois CS 241 Staff

16

When can we add
[Concurrency?

Work that can be executed, or data that can
be operated on, by multiple tasks
simultaneously

Block for potentially long 1/O waits

Use many CPU cycles in some places but
not others

Must respond to asynchronous events

Some work is more important than other
work (priority interrupts)

Copyright ©: University of Illinois CS 241 Staff

Concurrent Programming

Assumptions
o Two or more threads (or processes)

o Each executes in (pseudo) parallel and can'’t predict exact
running speeds

o The threads can interact via access to a shared variable
Example

o One thread writes a variable

o The other thread reads from the same variable

Problem

o The order of READs and WRITEs can make a difference!!!

Copyright ©: University of Illinois CS 241 Staff 18]

Common Ways to Structure
Multi-threaded Code

Manager/worker

o Single thread (manager) assigns work to other threads
(workers)

o Manager handles all input and parcels out work
Pipeline

o Task Is broken into a series of sub-tasks

o Each sub-task is handled by a different thread

Peer
o Same structure as manager/worker model

o After the main thread creates other threads, it participates
In the work

Copyright ©: University of Illinois CS 241 Staff 19]

Manager/Worker Model

Manager: Worker:

create N workers

forever { forever {
get a request wait for request
pick free worker perform task

} }
Challenges

o Not enough/too many worker threads

Copyright ©: University of Illinois CS 241 Staff

Pipeline Model
()

Manager: Stage N:

create N stages forever {

forever { wait for request
get a request perform task
pick 1st stage pick stage n+l

} }
Challenges

o Balancing per-stage load/parallelism

Copyright ©: University of Illinois CS 241 Staff

Race Conditions

What is a race condition?

o Two or more threads have an inconsistent view of a
shared memory region (i.e., a variable)

Why do race conditions occur?

o Values of memory locations replicated in registers during
execution

o Context switches at arbitrary times during execution
o Threads can see “stale” memory values in registers

Copyright ©: University of Illinois CS 241 Staff

Race Conditions

Race condition

o Whenever the output depends on the precise
execution order of the processes!!!

What solutions can we apply?

o Prevent context switches by preventing
Interrupts

o Make threads coordinate with each other to
ensure mutual exclusion in accessing critical
sections of code

Copyright ©: University of Illinois CS 241 Staff

Threading Pitfalls

Global variables

o No protection between threads
Disallow all global variables
Introduce new thread-specific global variables
Introduce new library functions

Are my libraries thread-safe?
o May use local variables

o May not be designed to be interrupted
Create wrappers

Copyright ©: University of Illinois CS 241 Staff

Threadssafe Library Calls

#include <string.h>

char *token;

char *line = "LINE TO BE SEPARATED";

char *search =" ";

/* Token will point to "LINE". */

#include <string.h>
char *token;
char *line = "LINE TO BE SEPARATED";

char *search =" ";

/* Token will point to "LINE". */

token = strtok(line, search);

token = strtok r(line, search);

/* Token will point to "TO". */

/* Token will point to "TO". */

token = strtok (NULL, search);

token = strtok r (NULL, search);

Copyright ©: University of Illinois CS 241 Staff

Threadssafe Library Calls

#include <string.h> #include <string.h>

char *token; char *token;

char *line = "LINE TO BE SEPARATED"; char *line = "LINE TO BE SEPARATED";
char *search =" "; char *search =" ";

char *state; char *state;

/* Token will point to "LINE". */ /* Token will point to "LINE". */
token = strtok r(line, search, &state); token = strtok r(line, search, &state);
/* Token will point to "TO". */ /* Token will point to "TO". */

token = strtok r (NULL, search, é&state); token = strtok r (NULL, search, é&state);

Copyright ©: University of Illinois CS 241 Staff

System & library functions that are

not required to be thread-safe

asctime dirname getenv getpwent lgamma readdir
basename dlerror getgrent getpwnam lgammarf setenv
catgets drand48 getgrgid getpwuid lgammal setgrent
crypt ecvt getgrnam getservbyname | localeconv setkey
ctime encrypt gethostbyaddr getservbyport localtime setpwent
dbm_clearerr | endgrent gethostbyname getservent lrand48 setutxent
dbm_close endpwent gethostent getutxent mrand48 strerror
dbm_delete endutxent getlogin getutxid nftw strtok
dbm_error fevt getnetbyaddr getutxline nl_langinfo ttyname
dbm_fetch ftw getnetbyname gmtime ptsname unsetenv
dbm_firstkey | gcvt getnetent hcreate putc_unlocked wcstombs
dbm_nextkey | getc_unlocked getopt hdestroy putchar_unlocked | wctomb
dbm_open getchar_unlocked | getprotobynumber | inet_ntoa pututxline

dbm_store getdate getprotoent |64a rand

Copyright ©: University of Illinois CS 241 Staff

[Things to think about ...

Who gets to go next when a thread
blocks/yields?

o Scheduling!

What happens when multiple threads
are sharing the same resource?

o Synchronization!

Copyright ©: University of Illinois CS 241 Staff

