
Copyright ©: University of Illinois CS 241 Staff 1

Threads Systems Concepts

Review: Why Threads?

 Processes do not share resources very well

 Why?

 Process context switching cost is very high

 Why?

 Threads: light-weight processes

Copyright ©: University of Illinois CS 241 Staff 2

Benefits of Threads

 Takes less time

 To create a new thread

 To terminate a thread

 To switch between two threads

 Inter-thread communication without

invoking the kernel

Copyright ©: University of Illinois CS 241 Staff 3

We like our Threads …

 Foreground and background work

 Asynchronous processing

 Speed of execution

 Modular program structure

Copyright ©: University of Illinois CS 241 Staff 4

Threads: Lightweight

Processes

5Copyright ©: University of Illinois CS 241 Staff

a) Three processes each with one thread

b) One process with three threads

E
n

v
ir

o
n

m
e

n
t
(r

e
s
o

u
rc

e
)

execution

Tasks Suitable for Threading

 Has multiple parallel sub-tasks

 Some sub-tasks block for potentially

long waits

 Some sub-tasks use many CPU cycles

 Must respond to asynchronous events

Copyright ©: University of Illinois CS 241 Staff 6

Questions

 What are the similarities between processes
and threads?

 What are the differences between processes
and threads?

7Copyright ©: University of Illinois CS 241 Staff

Thread Packages

 Kernel thread packages

 Implemented and supported at kernel

level

 User-level thread packages

 Implemented at user level

 Kernel perspective: everything is a

single-threaded process

8Copyright ©: University of Illinois CS 241 Staff

Threads in User Space (Old

Linux)

Copyright ©: University of Illinois CS 241 Staff 9

Collection of
procedures that
manages the

threads

Keep track of threads in
process (analogous to
kernel process table)

User-level Threads

 Advantages

 Fast Context Switching: keeps the OS out of it!

 User level thread libraries do not require system calls

 No call to OS and no interrupts to kernel

 thread_yield

 Save the thread information in the thread table

 Call the thread scheduler to pick another thread to run

 Saving local thread state scheduling are local

procedures

 No trap to kernel, low context switch overhead, no memory

switch

 Customized Scheduling (at user level)

Copyright ©: University of Illinois CS 241 Staff 10

User-level Threads

 Disadvantages

 What happens if one thread makes a blocking

I/O call?

 Change the system to be non-blocking

 Always check to see if a system call will block

 What happens if one thread never yields?

 Introduce clocked interrupts

 Multi-threaded programs frequently make

system calls

 Causes a trap into the kernel anyway!

Copyright ©: University of Illinois CS 241 Staff 11

Kernel Threads

Copyright ©: University of Illinois CS 241 Staff 12

User-level Threads Kernel-level Threads

Kernel-level Threads

 Advantages

 Kernel schedules threads in addition to

processes

 Multiple threads of a process can run

simultaneously

 Now what happens if one thread blocks on I/O?

 Kernel-level threads can make blocking I/O calls

without blocking other threads of same process

 Good for multicore architectures

Copyright ©: University of Illinois CS 241 Staff 13

Kernel-level Threads

 Disadvantages

 Overhead in the kernel… extra data

structures, scheduling, etc.

 Thread creation is expensive

 Have a pool of waiting threads

 What happens when a multi-threaded
process calls fork()?

 Which thread should receive a signal?

Copyright ©: University of Illinois CS 241 Staff 14

Trade-offs?

 Kernel thread packages

 Each thread can make blocking I/O calls

 Can run concurrently on multiple

processors

 Threads in User-level

 Fast context switch

 Customized scheduling

 No need for kernel support

Copyright ©: University of Illinois CS 241 Staff 15

Hybrid Implementations

(Solaris)

Multiplexing user-level threads onto kernel-level threads

16Copyright ©: University of Illinois CS 241 Staff

When can we add

Concurrency?

 Work that can be executed, or data that can

be operated on, by multiple tasks

simultaneously

 Block for potentially long I/O waits

 Use many CPU cycles in some places but

not others

 Must respond to asynchronous events

 Some work is more important than other

work (priority interrupts)

Copyright ©: University of Illinois CS 241 Staff 17

Concurrent Programming

 Assumptions

 Two or more threads (or processes)

 Each executes in (pseudo) parallel and can’t predict exact

running speeds

 The threads can interact via access to a shared variable

 Example

 One thread writes a variable

 The other thread reads from the same variable

 Problem

 The order of READs and WRITEs can make a difference!!!

Copyright ©: University of Illinois CS 241 Staff 18

Common Ways to Structure

Multi-threaded Code

 Manager/worker

 Single thread (manager) assigns work to other threads

(workers)

 Manager handles all input and parcels out work

 Pipeline

 Task is broken into a series of sub-tasks

 Each sub-task is handled by a different thread

 Peer

 Same structure as manager/worker model

 After the main thread creates other threads, it participates

in the work

Copyright ©: University of Illinois CS 241 Staff 19

Manager/Worker Model

Manager: Worker:
create N workers

forever { forever {

get a request wait for request

pick free worker perform task

} }

 Challenges

 Not enough/too many worker threads

Copyright ©: University of Illinois CS 241 Staff 20

M

W
W

W

W

Pipeline Model

Manager: Stage N:
create N stages forever {

forever { wait for request

get a request perform task

pick 1st stage pick stage n+1

} }

 Challenges

 Balancing per-stage load/parallelism

Copyright ©: University of Illinois CS 241 Staff 21

M 2 41 3

Race Conditions

 What is a race condition?

 Two or more threads have an inconsistent view of a

shared memory region (i.e., a variable)

 Why do race conditions occur?

 Values of memory locations replicated in registers during

execution

 Context switches at arbitrary times during execution

 Threads can see “stale” memory values in registers

Copyright ©: University of Illinois CS 241 Staff 22

Race Conditions

 Race condition

 Whenever the output depends on the precise

execution order of the processes!!!

 What solutions can we apply?

 Prevent context switches by preventing

interrupts

 Make threads coordinate with each other to

ensure mutual exclusion in accessing critical

sections of code

Copyright ©: University of Illinois CS 241 Staff 23

Threading Pitfalls

 Global variables

 No protection between threads

 Disallow all global variables

 Introduce new thread-specific global variables

 Introduce new library functions

 Are my libraries thread-safe?

 May use local variables

 May not be designed to be interrupted

 Create wrappers

Copyright ©: University of Illinois CS 241 Staff 24

Threadssafe Library Calls

#include <string.h>

char *token;

char *line = "LINE TO BE SEPARATED";

char *search = " ";

/* Token will point to "LINE". */

token = strtok(line, search);

/* Token will point to "TO". */

token = strtok(NULL, search);

#include <string.h>

char *token;

char *line = "LINE TO BE SEPARATED";

char *search = " ";

/* Token will point to "LINE". */

token = strtok_r(line, search);

/* Token will point to "TO". */

token = strtok_r(NULL, search);

Copyright ©: University of Illinois CS 241 Staff

Threadssafe Library Calls

#include <string.h>

char *token;

char *line = "LINE TO BE SEPARATED";

char *search = " ";

char *state;

/* Token will point to "LINE". */

token = strtok_r(line, search, &state);

/* Token will point to "TO". */

token = strtok_r(NULL, search, &state);

#include <string.h>

char *token;

char *line = "LINE TO BE SEPARATED";

char *search = " ";

char *state;

/* Token will point to "LINE". */

token = strtok_r(line, search, &state);

/* Token will point to "TO". */

token = strtok_r(NULL, search, &state);

Copyright ©: University of Illinois CS 241 Staff

System & library functions that are

not required to be thread-safe

Copyright ©: University of Illinois CS 241 Staff

asctime dirname getenv getpwent lgamma readdir

basename dlerror getgrent getpwnam lgammaf setenv

catgets drand48 getgrgid getpwuid lgammal setgrent

crypt ecvt getgrnam getservbyname localeconv setkey

ctime encrypt gethostbyaddr getservbyport localtime setpwent

dbm_clearerr endgrent gethostbyname getservent lrand48 setutxent

dbm_close endpwent gethostent getutxent mrand48 strerror

dbm_delete endutxent getlogin getutxid nftw strtok

dbm_error fcvt getnetbyaddr getutxline nl_langinfo ttyname

dbm_fetch ftw getnetbyname gmtime ptsname unsetenv

dbm_firstkey gcvt getnetent hcreate putc_unlocked wcstombs

dbm_nextkey getc_unlocked getopt hdestroy putchar_unlocked wctomb

dbm_open getchar_unlocked getprotobynumber inet_ntoa pututxline

dbm_store getdate getprotoent l64a rand

Things to think about …

 Who gets to go next when a thread

blocks/yields?

 Scheduling!

 What happens when multiple threads

are sharing the same resource?

 Synchronization!

Copyright ©: University of Illinois CS 241 Staff 28

