
How one process can do two things at once

 Thread of execution?

 Share process memory but each has its own call-stack

Create, Wait, Destroy

 How to use the POSIX API 'PThreads'

Threads and Processes

 When multi-threaded processes die

Copyright ©: University of Illinois CS 241 Staff

Thread Magic

Threads vs. Processes

 Process

 fork is expensive (time & memory)

 Thread

 Lightweight process

 Shared data space

 Does not require lots of memory or

startup time

Copyright ©: University of Illinois CS 241 Staff

Processes vs. Threads

a) Three processes each with one thread

b) One process with three threads

Copyright ©: University of Illinois CS 241 Staff

E
n

v
ir
o

n
m

e
n

t
(r

e
s
o

u
rc

e
)

execution

Process and Threads

 Each process can include many threads

 All threads of a process share:

 Process ID

 Memory (program code and global data)

 Open file/socket descriptors

 Semaphores

 Signal handlers and signal dispositions

 Working environment (current directory, user ID,

etc.)

Copyright ©: University of Illinois CS 241 Staff

Thread Usage: Word

Processor

 Working file can only be accessed by one process

at a time

Copyright ©: University of Illinois CS 241 Staff

What

would

happen

when this

is single-

threaded?

Thread Usage: Word

Processor

 Working file can only be accessed by one process

at a time

Copyright ©: University of Illinois CS 241 Staff

Thread Usage: Web Server

Copyright ©: University of Illinois CS 241 Staff

What

would

happen if

this were

single-

threaded?

Web Server

 Pseudo-code for previous
slide

 Dispatcher thread

 Worker thread

 Alternative

 Dispatcher thread

 Worker thread

Copyright ©: University of Illinois CS 241 Staff

while (TRUE) {

get_next_request(&buf);

handoff_work(&buf);

}

while (TRUE) {

wait_for_work(&buf);

look_for_page_in_cache(&buf, &page);

if (page_not_in_cache(&page))

read_page_from_disk(&buf, &page);

return_page(&page);

}

while (TRUE) {

get_next_request(&buf);

handoff_work(&buf);

}

work (&buf) {

look_for_page_in_cache(&buf, &page);

if (page_not_in_cache(&page))

read_page_from_disk(&buf, &page);

return_page(&page);

}

What is the difference?

Thread of Execution

 Sequential set of instructions

 Function calls & automatic (local)

variables

 Need Program Counter and Stack for

each thread

Copyright ©: University of Illinois CS 241 Staff

Compare: Normal function call

(1 thread)

Copyright ©: University of Illinois CS 241 Staff

processfd(); processfd() {

}

Calling program
Called function

Thread of execution

Compare: Threaded function

call

Copyright ©: University of Illinois CS 241 Staff

pthread_create(); processfd() {

}

Creatingprogram
Created thread

processfd(); processfd() {

}

Calling program
Called function

Thread creation

Thread of execution

Thread Execution States

 States associated with a change in thread

state

 Spawn (another thread)

 Block

 Does blocking a thread block other, or all, threads

 Unblock

 Finish (thread)

 De-allocate register context and stacks

Copyright ©: University of Illinois CS 241 Staff

Thread-Specific Resources

 Each thread has it’s

own

 Thread ID (integer)

 Stack, Registers,

Program Counter

 Threads within the

same process can

communicate using

shared memory

 Must be done carefully!

Copyright ©: University of Illinois CS 241 Staff

Processes vs. Threads

 Each thread executes separately

 Threads in the same process share many

resources

 No protection among threads!! (What?)
Copyright ©: University of Illinois CS 241 Staff

Per Process Items Per Thread Items

Address space

Global variables

Open files

Child processes

Pending alarms

Signals and signal handlers

Accounting information

Program counter

Registers

Stack

State

Process Creation vs.

Thread Creation

 http://www.llnl.gov/computing/tutorials/pthreads.

 Timings reflect 50,000 process/thread

 Creations, were performed with the time utility, and units are

in seconds, no optimization flags.
Copyright ©: University of Illinois CS 241 Staff

Platform
fork() pthread_create()

real user sys real user sys

AMD 2.3 GHz Opteron (16 cpus) 12.5 1.0 12.5 1.2 0.2 1.3

AMD 2.4 GHz Opteron (8 cpus) 17.6 2.2 15.7 1.4 0.3 1.3

IBM 4.0 GHz POWER6 (8 cpus) 9.5 0.6 8.8 1.6 0.1 0.4

IBM 1.9 GHz POWER5 p5-575 (8 cpus) 64.2 30.7 27.6 1.7 0.6 1.1

IBM 1.5 GHz POWER4 (8 cpus) 104.5 48.6 47.2 2.1 1.0 1.5

INTEL 2.4 GHz Xeon (2 cpus) 54.9 1.5 20.8 1.6 0.7 0.9

INTEL 1.4 GHz Itanium2 (4 cpus) 54.5 1.1 22.2 2.0 1.2 0.6

What’s POSIX Got To Do With

It?

 Early on

 Each OS had it’s own thread library/API

 Difficult to write multithreaded programs

 Learn a new API with each new OS

 Modify code with each port to a new OS

 So

 POSIX (IEEE 1003.1c-1995) provided a

standard known as pthreads

Copyright ©: University of Illinois CS 241 Staff

The pthreads API

 Thread management

 Creating, detaching, joining, etc.

Set/query thread attributes

 Mutexes

 Synchronization

 Condition variables

 Communications between threads that

share a mutex

Copyright ©: University of Illinois CS 241 Staff

Today

Next

week

Creating a Thread

int pthread_create (pthread_t* tid,

pthread_attr_t* attr, void*(child_main), void*

arg);

 Spawn a new posix thread

 Parameters:

 tid:

 Unique thread identifier returned from call

 attr:

 Attributes structure used to define new thread

 Use NULL for default values

 child_main:

 Main routine for child thread

 Takes a pointer (void*), returns a pointer (void*)

 arg:

 Argument passed to child thread

Copyright ©: University of Illinois CS 241 Staff

Creating a Thread

 pthread_create() takes a pointer to a function as

one of its arguments

 child_main is called with the argument specified by arg

 child_main can only have one parameter of type void *

 Complex parameters can be passed by creating a structure

and passing the address of the structure

 The structure can't be a local variable

 Thread ID
 pthread_t pthread_self(void);

 Returns currently executing thread’s ID

Copyright ©: University of Illinois CS 241 Staff

Example: pthread_create()

#include <pthread.h>

#include <stdio.h>

#include <stdlib.h>

void *snow(void *data) {

printf("Let it snow ... %s\n", data);

pthread_exit(NULL);

}

int main(int argc, char *argv[]) {

pthread_t mythread;

int result;

char *data = "Let it snow.";

result = pthread_create(&mythread, NULL, snow, data);

printf("pthread_create() returned %d\n", result);

if(result)

exit (1);

pthread_exit(NULL);

}

Copyright ©: University of Illinois CS 241 Staff

What is this?

Thread vs. Process Creation

 fork() clones the process

 Two separate processes with

independent destinies

 Independent memory space for each

process

 pthread_create()

 Start from a function

 Share memory

Copyright ©: University of Illinois CS 241 Staff

fork()

Copyright ©: University of Illinois CS 241 Staff

Global

Variables

Code

Stack

Global

Variables

Code

Stack

Process A

Process B
fork()

pthread_create()

Copyright ©: University of Illinois CS 241 Staff

Global

Variables

Code

Stack Stack

Process A

Thread 1

Process A

Thread 2

pthread_create()

Possible output?

int x = 1;

fork();

x = x+1;

printf("x is %d\n");

Copyright ©: University of Illinois CS 241 Staff

Possible output?

int x = 1;

main(…) {

pthread_t tid;

pthread_create(

&tid,NULL,

func,NULL);

func(NULL);

}

void* func(void*p){

x = x + 1;

printf("x is

%d\n");

return NULL;

}

Copyright ©: University of Illinois CS 241 Staff

Possible output?

int x = 1;

main(…) {

pthread_t tid;

pthread_create(

&tid,NULL,

func,NULL);

func(NULL);

x = x + 1;

}

void* func(void*p){

x = x + 1;

printf("x is

%d\n");

return NULL;

}

Copyright ©: University of Illinois CS 241 Staff

Summary: Creating Threads

 Initially, main() has a single thread

 All other threads must be explicitly created

 pthread_create()  new executable thread

 Can be called any number of times from anywhere

 Maximum number of threads is implementation

dependent

 Question:

 After a thread has been created, how do you know when it

will be scheduled to run by the operating system?

 Answer: It is up to the operating system

 Note: Good coding should not require knowledge of scheduling

Copyright ©: University of Illinois CS 241 Staff

pthreads Attributes

 Attributes

 Data structure pthread_attr_t

 Set of choices for a thread

 Passed in thread creation routine

 Choices

 Scheduling options (more later on scheduling)

 Detached state

 Detached

 Main thread does not wait for the child threads to terminate

 Joinable

 Main thread waits for the child thread to terminate

 Useful if child thread returns a value

Copyright ©: University of Illinois CS 241 Staff

pthreads Attributes

 Initialize an attributes structure to the default
values
 int pthread_attr_init (pthread_attr_t*

attr);

 Set the detached state value in an attributes
structure
 int pthread_attr_setdetachedstate

(pthread_attr_t* attr, int value);

 Value
 PTHREAD_CREATE_DETACHED

 PTHREAD_CREATE_JOINABLE

Copyright ©: University of Illinois CS 241 Staff

Detached Threads

Copyright ©: University of Illinois CS 241 Staff

Master

Thread

Worker

Thread

Worker

Thread

pthread_create()

pthread_exit()

Worker

Thread

…

pthread_exit()

pthread_exit()

Detaching Threads:
pthread_detach()

int pthread_detach(pthread_t thread);

 Thread resources can be reclaimed on termination

 Return results of a detached thread are unneeded

 Returns

 0 on success

 Error code on failure

 Parameters

 thread:

 Target thread identifier

 Notes

 pthread_detach() can be used to explicitly detach a thread
even though it was created as joinable

 There is no converse routine

Copyright ©: University of Illinois CS 241 Staff

Joined Threads

Copyright ©: University of Illinois CS 241 Staff

Master

Thread

Worker

Thread

Worker

Thread

pthread_create() pthread_join()

pthread_exit()

Worker

Thread

…

Waiting for Threads:
pthread_join()

int pthread_join(pthread_t thread, void** retval);

 Suspend calling thread until target thread terminates

 Returns

 0 on success

 Error code on failure

 Parameters

 thread:

 Target thread identifier

 retval:

 The value passed to pthread_exit() by the terminating thread is
made available in the location referenced by retval

Copyright ©: University of Illinois CS 241 Staff

Waiting for Threads:
pthread_join()

int pthread_join(pthread_t thread, void** retval);

 Note

 You cannot call pthread_join() on a detached thread,

 Detaching means you are NOT interested in knowing about the
thread’s exit

 Set pthread_attr to joinable when calling
pthread_create()

pthread_attr_init(&attr);

pthread_attr_setdetachstate(&attr,

PTHREAD_CREATE_JOINABLE);

Copyright ©: University of Illinois CS 241 Staff

Terminating Threads:
pthread_exit()

int pthread_exit(void * retval);

 Terminate the calling thread

 Makes the value retval available to any successful join with
the terminating thread

 Returns

 pthread_exit() cannot return to its caller

 Parameters

 retval:

 Pointer to data returned to joining thread

 Note

 If main() exits before its threads, and exits with

pthread_exit(), the other threads continue to execute.

Otherwise, they will be terminated when main() finishes.

Copyright ©: University of Illinois CS 241 Staff

Returning data through
pthread_join()

void *thread(void *vargp) {

pthread_exit((void *)42);

}

int main() {

int i;

pthread_t tid;

pthread_create(&tid, NULL, thread, NULL);

pthread_join(tid, (void **)&i);

printf("%d\n",i);

}

Copyright ©: University of Illinois CS 241 Staff

pthread_attr_t attr;

/* Initialize and set thread detached

attribute */

pthread_attr_init(&attr);

pthread_attr_setdetachstate(&attr,

PTHREAD_CREATE_JOINABLE);

What is missing?

What could happen

without this code?

Example: pthread_join()

#include <pthread.h>

#include <stdio.h>

#include <stdlib.h>

#define NUM_THREADS 4

int main (int argc, char *argv[]) {

pthread_t thread[NUM_THREADS];

pthread_attr_t attr;

int rc;

long t;

void *status;

/* Initialize and set thread detached

attribute */

pthread_attr_init(&attr);

pthread_attr_setdetachstate(&attr,

PTHREAD_CREATE_JOINABLE);

for(t=0; t<NUM_THREADS; t++) {

printf("Main: creating thread %ld\n", t);

rc = pthread_create(&thread[t], &attr,

BusyWork, (void *)t);

if (rc) {

printf("ERROR; return code is %d\n",

rc);

exit(-1);

}

}

/* Free attributes */

pthread_attr_destroy(&attr);

Copyright ©: University of Illinois CS 241 Staff

Example: pthread_join()

void *BusyWork(void *t) {

int i;

long tid;

double result = 0.0;

tid = (long)t;

printf("Thread %ld starting...\n",

tid);

for (i=0; i<1000000; i++) {

result = result + sin(i) * tan(i);

}

printf("Thread %ld result = %e\n",

tid, result);

pthread_exit((void*) t);

}

int main (int argc, char *argv[]) {

...

/* Wait for the other threads */

for(t=0; t<NUM_THREADS; t++) {

rc = pthread_join(thread[t], &status);

if (rc) {

printf("ERROR; return code is %d\n", rc);

exit(-1);

}

printf("Main: status for thread %ld: %ld\n",

t, (long)status);

}

printf("Main: program completed. Exiting.\n");

pthread_exit(NULL);

}

Copyright ©: University of Illinois CS 241 Staff

pthread Error Handling

 pthreads functions do not follow the usual
Unix conventions
 Similarity

 Returns 0 on success

 Differences
 Returns error code on failure

 Does not set errno

 What about errno?

 Each thread has its own

 Define _REENTRANT (-D_REENTRANT switch to
compiler) when using pthreads

Copyright ©: University of Illinois CS 241 Staff

Thread Lifetime

 A thread exists until

 It returns from the function or calls
pthread_exit()

 The whole process terminates

 The machine catches fire

Copyright ©: University of Illinois CS 241 Staff

So, your process terminates

when…

1. Any thread calls
exit();

2. The main thread returns
main() {

pthread_create();

return 0;

}

3. Segmentation fault
(char)0 = 0;

4. There are no more threads left to run

Copyright ©: University of Illinois CS 241 Staff

Main points

 A thread is the lightest unit of work that can

be scheduled to run on the processor

 When creating a thread you

 Indicate which function the thread should

execute

 Indicate the detach state of the thread

 When a new thread is created

 It runs concurrently with the creating thread

 It shares common data space

Copyright ©: University of Illinois CS 241 Staff

Why Use Threads Over

Processes?

 Creating a new process can be expensive

 Time

 A call into the operating system is needed

 Context-switching involves the operating system

 Memory

 The entire process must be replicated

 The cost of inter-process communication and

synchronization of shared data

 May involve calls into the operation system kernel

 Threads can be created without replicating an entire

process

 Creating a thread is done in user space rather than kernel

Copyright ©: University of Illinois CS 241 Staff

Threads vs. Processes

Copyright ©: University of Illinois CS 241 Staff

Property
Processes created with

fork

Threads of a

process

Ordinary function

calls

variables Get copies of all variables
Share global

variables

Share global

variables

IDs Get new process IDs

Share the same

process ID but have

unique thread ID

Share the same

process ID (and

thread ID)

Data/control

Must communicate

explicitly, e.g., use pipes

or small integer return

value

May communicate

with return value or

carefully shared

variables

May communicate

with return value

or shared variables

Parallelism

(one CPU)
Concurrent Concurrent Sequential

Parallelism

(multiple

CPUs)

May be executed

simultaneously

Kernel threads may

be executed

simultaneously

Sequential

Take-away questions

 Why are threads useful?

 Why not just create concurrent

processes?

 What support is needed by the O/S?

 What could happen if a thread makes

a blocking I/O call?

Copyright ©: University of Illinois CS 241 Staff

