
Concurrency & Context Switching

Process Control Block
What's in it and why? How is it used? Who sees it?

5 State Process Model
State Labels. Causes of State Transitions. Impossible

Transitions.

Zombies and Orphans

Copyright ©: University of Illinois CS 241 Staff

Processes - A System View

How does fork work?

 Parent

mypid = 4, myppid = 1

int forked_pid , wait_pid;

int status = 0;

if (forked_pid = fork()) {

/* parent */

…..

wait_pid = wait(&status);

} else {

/* child */

…..

exit(status);

}

 Child

mypid = 6, myppid = 4

int forked_pid, wait_pid;

int status = 0;

if (forked_pid = fork()) {

/* parent */

…..

wait_pid = wait(&status);

} else {

/* child */

…..

exit(status);

}

Copyright ©: University of Illinois CS 241 Staff

How does fork really work?

 Parent

mypid = 4, myppid = 1

int forked_pid , wait_pid;

int status = 0;

if (forked_pid = fork()) {

/* parent */

…..

wait_pid = wait(&status);

} else {

/* child */

…..

exit(status);

}

 Child

mypid = 6, myppid = 4

int forked_pid , wait_pid;

int status = 0;

Copyright ©: University of Illinois CS 241 Staff

What the fork?

 Concurrency

 What is a sequential program?

 A single thread of control that executes one instruction

 When it is finished, it executes the next logical

instruction

 What is a concurrent program?

 A collection of autonomous sequential programs,

executing (logically) in parallel

 What does this gain us?

 The appearance that multiple actions are

occurring at the same time

Copyright ©: University of Illinois CS 241 Staff

What is fork good for?

#include <stdio.h>

#include <sys/types.h>

#include <unistd.h>

int main() {

pid_t pid;

int i;

if(pid = fork()) { /* parent */

}

else { /* child */

}

return 0;

}

Copyright ©: University of Illinois CS 241 Staff

childProcedures();

parentProcedures();

What is fork good for?

#include <stdio.h>

#include <sys/types.h>

#include <unistd.h>

int main() {

pid_t pid;

int i;

while (1) {

if(pid = fork()) { /* parent */

}

else { /* child */

}

}

return 0;

}

Copyright ©: University of Illinois CS 241 Staff

/* wait for new clients */

/* handle new client */

/* reset server */

Why Concurrency?

 Natural Application Structure

 The world is not sequential!

 Easier to program multiple independent and

concurrent activities

 Better resource utilization

 Resources unused by one application can be

used by the others

 Better average response time

 No need to wait for other applications to

complete

Copyright ©: University of Illinois CS 241 Staff

Benefits of Concurrency

Copyright ©: University of Illinois CS 241 Staff

Keyboard

CPU

Disk

Time

Keyboard

CPU

Disk

Wait for input

Wait for input

Input

N
o

 C
o

n
c
u

rr
e

n
c
y

W
it
h

 C
o

n
c
u

rr
e

n
c
y

Benefits of Concurrency

Copyright ©: University of Illinois CS 241 Staff

Client 1

Client 2

Client 3

Time

Client 1

Client 2

Client 3

Wait for input

Wait for input

Input

N
o

 C
o

n
c
u

rr
e

n
c
y

W
it
h

 C
o

n
c
u

rr
e

n
c
y

On a single CPU system…

 Only one process can use the CPU at

a time

 Uniprogramming

 Only one process resident at a time

… But we want the appearance of every

process running at the same time

 How can we manage CPU usage?

 “Resource Management”

Copyright ©: University of Illinois CS 241 Staff

On a single CPU system…

 Your process is currently using the

CPU

 What are other processes doing?

Copyright ©: University of Illinois CS 241 Staff

long count = 0;

while(count >=0)

count ++;

On a single CPU system…

 Answer

 Nothing

 What can the OS do to help?
 Naively… Put the current process on 'pause'

 What are our options?

Copyright ©: University of Illinois CS 241 Staff

O/S : I need the CPU

1. Time slicing

 Use a HW timer to generate a HW interrupt

2. Multiprogramming

 Multiple processes resident at a time

 Wait until the process issues a system call

 e.g., I/O request

3. Cooperative Multitasking

 Let the user process yield the CPU

Copyright ©: University of Illinois CS 241 Staff

Time Slicing

 A Process loses the CPU when its

time quanta has expired

 Advantages?

 Disadvantages?

Copyright ©: University of Illinois CS 241 Staff

long count = 0;

while(count >=0)

count ++;

Multiprogramming

 Wait until system call

 Advantages?

 Disadvantages?

Copyright ©: University of Illinois CS 241 Staff

long count = 0;

while(count >=0) {

printf(“Count = %d\n”, cnt);

count ++;

}

Cooperative Multitasking

 Wait until the process gives up the

CPU

 Advantages?

 Disadvantages?

Copyright ©: University of Illinois CS 241 Staff

long count = 0;

while(count >=0) {

count ++;

if(count % 10000 == 0)

yield();

}

Context Switch: In a simple

O/S (no virtual memory)

 Context switch

 The act of

removing one

process from

the running

state and

replacing it with

another

Copyright ©: University of Illinois CS 241 Staff

Dispatcher

Process A

Process B

Process C

8000

Address

100

5000

8000

12000

Program Counter

Context Switch

 Overhead to re-assign CPU to another

user process

 What activities are required?

Copyright ©: University of Illinois CS 241 Staff

Context Switch

 Overhead to re-assign CPU to another

user process

 Capture state of the user's processes so

that we can restart it later (CPU

Registers)

 Queue Management

 Accounting

 Scheduler chooses next process

 Run next process
Copyright ©: University of Illinois CS 241 Staff

2 State Model

Processes

Copyright ©: University of Illinois CS 241 Staff

not

running
running

pause

dispatch

enter exit

2 State Model

Processes

System

Copyright ©: University of Illinois CS 241 Staff

not

running
running

pause

dispatch

enter exit

enter exit
processor

pause

dispatch
queue

2 State Model

Processes

System

Copyright ©: University of Illinois CS 241 Staff

not

running
running

pause

dispatch

enter exit

enter exit
processor

pause

dispatch
queue

What information

do we need to keep

in the queue?

Process Control Block (PCB)

 In-memory system structure

 User processes cannot access it

 Identifiers

 pid & ppid

 Processor State Information

 User-visible registers, control and status, stack

 Scheduling information

 Process state, priority, …, waiting for event info

Copyright ©: University of Illinois CS 241 Staff

PCB (more)

 Inter-process communication

 Signals

 Privileges

 CPU instructions, memory

 Memory Management

 Segments, VM control 'page tables'

 Resource Ownership and utilization

Copyright ©: University of Illinois CS 241 Staff

Five State Process Model

 "All models are wrong. Some Models are

Useful"

 George Box, Statistician

 2 state model

 Too simplistic

 What does “Not Running” mean?

 7 state model

 Considers suspending process to disk

 See Stallings 3.2

Copyright ©: University of Illinois CS 241 Staff

5 State Model - States

Copyright ©: University of Illinois CS 241 Staff

not

running

running

5 State Model - States

Copyright ©: University of Illinois CS 241 Staff

ready

running

blocked

5 State Model - States

Copyright ©: University of Illinois CS 241 Staff

new ready

running done

blocked

Five State Process Model

 Running

 Currently executing

 On a single processor machine, at most one process in the

“running” state

 Ready

 Prepared to execute

 Blocked

 Waiting on some event

 New

 Created, but not loaded into memory

 Done

 Released from pool of executing processes

Copyright ©: University of Illinois CS 241 Staff

5 State Model - Transitions

 Null (nothing) to New

 New process creation

Copyright ©: University of Illinois CS 241 Staff

new ready

running done

blocked

enter

5 State Model - Transitions

 New to Ready

 Move to pool of

executable

processes

Copyright ©: University of Illinois CS 241 Staff

new ready

running done

blocked

5 State Model - Transitions

 Ready to Running

 Chosen to run from

the pool of

processes

Copyright ©: University of Illinois CS 241 Staff

new ready

running done

blocked

5 State Model - Transitions

 Running to Ready

 Preempted by OS

 Running to Blocked

 Request for an

unavailable resource

 Running to Done

 Terminated by the OS

Copyright ©: University of Illinois CS 241 Staff

new ready

running done

blocked

5 State Model - Transitions

 Blocked to Ready

 Resource is now available

Copyright ©: University of Illinois CS 241 Staff

new ready

running done

blocked

5 State Model - Transitions

 Ready to Done

 Terminated by parent

 Blocked to Done

 Terminated by parent

Copyright ©: University of Illinois CS 241 Staff

new ready

running done

blocked

5 State Model - Transitions

Copyright ©: University of Illinois CS 241 Staff

new ready

running done

blocked

process created

normal or abnormal termination

quantum

expired

I/O

request

I/O complete

selected to

runenter

Process Queue Model

Copyright ©: University of Illinois CS 241 Staff

enter exit
processor

dispatch
ready queue

blocked queue

timeout

event wait

enter exit
processor

dispatch
queue

2 State Model: What is missing?

Process exceeds

time quanta

Process makes

systems call

Process Queue Model

Copyright ©: University of Illinois CS 241 Staff

enter exit
processor

dispatch
ready queue

event 1 queue

timeout

event 1 wait

event 2 queue

event 2 wait

event 3 queue

event n wait

…

What do we

gain with

multiple

queues?

Process Queue Model

Copyright ©: University of Illinois CS 241 Staff

enter exit
processor

dispatch
ready queue

priority 1 queue

timeout

priority 1 wait

priority 2 queue

priority 2 wait

priority 3 queue

priority n wait

…

What do we

gain with

multiple

queues?

Orphans and Zombies

Copyright ©: University of Illinois CS 241 Staff

Orphans

 If the parent process dies no one is left

to take care of the child

 Child may consume large amounts of

resources (CPU, File I/O)

 Child Process is re-parented to the init

process

 init does not kill child but will wait for it.

 child continues to run and run…

Copyright ©: University of Illinois CS 241 Staff

Zombies

 A Zombie is a child

process that exited

before it’s parent
called wait() to get

the child’s exit status

 Does not consume

many resources

 Exit status (held in the

program control block)

 Also adopted by the
init process

 Zombie Removal

 Professional code

installs signal handler

(CS241 later lecture)
for signal SIGCHLD

which issues a wait()

call

Copyright ©: University of Illinois CS 241 Staff

Take-away questions

 What would happen if user processes

were allowed to disable interrupts?

 In a single CPU system what is the

maximum number of processes that

can be in the running state?

 Next: Threads and Thread Magic
Copyright ©: University of Illinois CS 241 Staff

