
Copyright ©: University of Illinois CS 241 Staff 1

Processes

Processes

 What is a process?

 How do I make one? wait for one? kill

one?

 Birth

 Life

 Death

Copyright ©: University of Illinois CS 241 Staff 2

Program or Process?

 Process

 A process is the context (the information/data)

maintained for an executing program

 An executable instance of a program

 A program can have many processes

 Each process has a unique identifier

 Unix processes

 Process #1 is known as the 'init' process (root

of the process hierarchy)

Copyright ©: University of Illinois CS 241 Staff 3

What makes up a Process?

 Program code

 Machine registers

 Global data

 Stack

 Open files

 An environment

Copyright ©: University of Illinois CS 241 Staff 4

Process Context

 Process ID (pid) unique integer

 Parent process ID (ppid) unique integer

 Current directory

 File descriptor table

 Environment VAR=VALUE pairs

 Pointer to program code

 Pointer to data Mem for global vars

 Pointer to stack Mem for local vars

 Pointer to heap Dynamically

allocated memory

 Execution priority

 Signal information

Copyright ©: University of Illinois CS 241 Staff 5

Unix Processes

 Address space

 The address space is a section of memory that contains

the code to execute as well as the process stack

 Set of data structures in the kernel to keep track of

that process

 Address space map

 Current status of the process

 Execution priority of the process

 Resource usage of the process

 Current signal mask

 Owner of the process

Copyright ©: University of Illinois CS 241 Staff 6

Process Lifetime

 Some processes run from system boot to

shutdown

 Servers & Daemons

(e.g. Apache httpd server)

 Most processes come and go rapidly, as

tasks start and complete

 'unit of work' on a modern computer

 A process can die a premature, even

horrible death (say, due to a crash)

Copyright ©: University of Illinois CS 241 Staff 7

Know your process

 Each process has a unique identifier

int myid = getpid()

Copyright ©: University of Illinois CS 241 Staff 8

What is wrong with

this?

Know your process

 better…

pid_t myid = getpid()

 pid_t: int in linux,

 pid_t: long in other systems

 Know your parent

pid_t myparentid = getppid()

Copyright ©: University of Illinois CS 241 Staff 9

Process Creation

 On creation, process needs resources

 CPU, memory, files, I/O devices

 Get resources from the OS or from the

parent process

 Child process is restricted to a subset of parent

resources

 Prevents many processes from overloading

system

Copyright ©: University of Illinois CS 241 Staff 10

Process Creation

 Execution

 Parent continues concurrently with child

 Parent waits until child has terminated

 Address space

 Child process is duplicate of parent process

 Child process has a new program loaded into it

Copyright ©: University of Illinois CS 241 Staff 11

Creating a Process – fork()

#include <sys/types.h>

#include <unistd.h>

pid_t fork(void);

 Create a child process

 The child is an (almost) exact copy of the parent

 The new process and the old process both continue in
parallel from the statement that follows the fork()

 Returns:

 To child

 0 on success

 To parent

 process ID of the child process

 -1 on error, sets errno

Copyright ©: University of Illinois CS 241 Staff 12

Program

Text

Creating a Process – fork()

Copyright ©: University of Illinois CS 241 Staff 13

Shared

Program

TextData
Copy

of Data

Parent

pid = fork() Child

pid == 0

In the child:
pid == 0;

In the

parent:
pid == the

process ID

of the child

A program can use this pid difference to do

different things in the parent and child

Creating a Process – fork()

 The child process is an exact copy of the

parent process except

 The child process has a unique process ID

 The child process has a different parent process

ID (i.e., the process ID of the calling process)

 The child process has its own copy of the

parent's file descriptors

 and some other stuff about memory and stuff

that we’ll learn later …

Copyright ©: University of Illinois CS 241 Staff 14

Example – fork()

int pid;

int status = 0;

if (pid = fork()) {

/* parent */

…..

pid = wait(&status);

} else {

/* child */

…..

exit(status);

}

Copyright ©: University of Illinois CS 241 Staff 15

Parent uses wait to sleep until the
child exits.
wait returns child pid and status.

fork returns twice:
Parent: pid == child process ID (pid)
Child: pid == 0

Example – fork()

Challenge:

write code so that child prints
'CHILD: my id is ___ and my parent id is ___'

and parent prints
'PARENT:my id is ___ and the child's id is ___'

Copyright ©: University of Illinois CS 241 Staff 16

Example – fork()

childpid = fork();

if ?? {

printf(“CHILD: my id is %d and my parent id is

%d.”, getpid(), getppid());

exit(0);

}

else {

printf(“PARENT:my id is %d and the child's id is

%d.”, childpid, getpid());

exit(0);

}

Copyright ©: University of Illinois CS 241 Staff 17

What order will the output be
printed in?

(childpid == 0)

Chain and Fan

Chain

 Write code to make

chain

Fan

 Code to make N children

of one parent process?

Copyright ©: University of Illinois CS 241 Staff 18

ChildChildParent

Parent

Child Child
… …

Chain and Fan

Chain

pid_t childpid = 0;

for (i=1;i<n;i++)

if (childpid = fork())

break;

Fan

Copyright ©: University of Illinois CS 241 Staff 19

ChildChildParent

Parent

Child Child
… …

Chain and Fan

Chain

pid_t childpid = 0;

for (i=1;i<n;i++)

if (childpid = fork())

break;

Fan

pid_t childpid = 0;

for (i=1;i<n;i++)

if ((childpid = fork())

<=0)

break;

Copyright ©: University of Illinois CS 241 Staff 20

ChildChildParent

Parent

Child Child
… …

Chain and Fan

Chain

pid_t childpid = 0;

for (i=1;i<n;i++)

if (childpid = fork())

break;

Fan

pid_t childpid = 0;

for (i=1;i<n;i++)

if ((childpid = fork())

== -1)

break;

Copyright ©: University of Illinois CS 241 Staff 21

ChildChildParent

Parent

Child Child
… …

What
happens
here?

Chain and Fan Example (n=4)

Copyright ©: University of Illinois CS 241 Staff 22

pid_t childpid = 0;

for (i=1;i<n;i++)

if ((childpid =

fork()) == -1)

break;

Parent
n = 4

Child
i = 1

Child
i = 2

Child
i = 3

Child
i = 2

Child
i = 3

Child
i = 3

Child
i = 4

Child
i = 4

Child
i = 3

Child
i = 4

Child
i = 4

Child
i = 4

Child
i = 4

Child
i = 4

Child
i = 4

Example – fork()

#include <stdio.h>

#include <sys/types.h>

#include <unistd.h>

int main() {

pid_t pid; /* could be int */

int i;

pid = fork();

Copyright ©: University of Illinois CS 241 Staff 23

Example – fork()

if(pid > 0) {/* parent */

for(i=0; i < 1000; i++)

printf(“\t\t\tPARENT %d\n”, i);

} else { /* child */

for(i=0; i < 1000; i++)

printf(“CHILD %d\n”, i);

}

return 0;

}

Copyright ©: University of Illinois CS 241 Staff 24

What will the output be?

Example – fork()

Possible Output

CHILD 0

CHILD 1

CHILD 2

PARENT 0

PARENT 1

PARENT 2

PARENT 3

CHILD 3

CHILD 4

PARENT 4

:

Copyright ©: University of Illinois CS 241 Staff 25

Example – fork()

Notes

 i is copied between parent and child

 Switching between parent and child

depends on many factors

 Machine load, system process scheduling

 I/O buffering effects amount of output shown

 Output interleaving is nondeterministic

 Cannot determine output by looking at code

Copyright ©: University of Illinois CS 241 Staff 26

Waiting for a child to finish –
wait()

#include <sys/types.h>

#include <wait.h>

pid_t wait(int *status);

 Suspend calling process until child has finished

 Returns:

 Process ID of terminated child on success

 -1 on error, sets errno

 Parameters:
 status: status information set by wait and evaluated

using specific macros defined for wait.

Copyright ©: University of Illinois CS 241 Staff 27

Waiting for any child to finish

#include <errno.h>

#include <sys/wait.h>

pid_t childpid;

childpid = wait(NULL);

if (childpid != -1)

printf(“waited for child with pid %ld\n”,

childpid);

(see “man 2 wait”)

Copyright ©: University of Illinois CS 241 Staff 28

wait() Function

Copyright ©: University of Illinois CS 241 Staff 29

 Allows parent process

to wait (block) until

child finishes

 Causes the caller to

suspend execution

until child’s status is

available

errno cause

ECHILD Caller has no

unwaited-for

children

EINTR Function was

interrupted by

signal

EINVAL Options

parameter of

waitpid was

invalid

Waiting for a child to finish –
waitpid()

#include <sys/types.h>

#include <wait.h>

pid_t waitpid(pid_t pid, int *status, int
options);

 Suspend calling process until child specified by pid

has finished

 Returns:

 Process ID of terminated child on success

 0 if WNOHANG and no child available, sets errno

 -1 on error, sets errno

 Parameters:
 status: status information set by wait and evaluated

using specific macros defined for wait.

Copyright ©: University of Illinois CS 241 Staff 30

Waiting for a child to finish –
waitpid()

#include <sys/types.h>

#include <wait.h>

pid_t waitpid(pid_t pid, int *status, int
options);

 Suspend calling process until child specified by pid

has finished

 Parameters:
 pid:

 < -1: wait for any child process whose process group ID is
equal to the absolute value of pid.

 -1 wait for any child process (same as wait)

 0 wait for any child process whose process group ID is equal
to that of the calling process.

 > 0 wait for the child whose process ID is equal to the value
of pid.

Copyright ©: University of Illinois CS 241 Staff 31

Waiting for a child to finish –
waitpid()

#include <sys/types.h>

#include <wait.h>

pid_t waitpid(pid_t pid, int *status, int
options);

 Suspend calling process until child specified by pid

has finished

 Parameters:
 options:

 WNOHANG: return immediately if no child has exited.

 WUNTRACED: return for children that are stopped, and whose
status has not been reported.

Copyright ©: University of Illinois CS 241 Staff 32

When good processes die

Copyright ©: University of Illinois CS 241 Staff 33

Process Termination

 Upon completion of last statement

 A process automatically asks the OS to delete it

 All of the child’s resources are de-allocated

 Child process may return output to parent process

 Other termination possibilities: Aborted by parent

process

 Child has exceeded its usage of some resources

 Task assigned to child is no longer required

 Parent is exiting and OS does not allow child to continue

without parent

Copyright ©: University of Illinois CS 241 Staff 34

Process Termination

 Voluntary

termination

 Normal exit

 End of main()

 Error exit
 exit(2)

 Involuntary

termination

 Fatal error

 Divide by 0, core

dump / seg fault

 Killed by another

process

 kill procID, end

task

Copyright ©: University of Illinois CS 241 Staff 35

How to List all Processes?

 On Windows: run Windows task
manager

 Hit Control+ALT+delete

 Click on the “processes” tab

 On UNIX
 > ps –e also, pstree

 Try “man ps”

Copyright ©: University of Illinois CS 241 Staff 36

Example – fork()

#include <stdio.h>

#include <sys/types.h>

#include <unistd.h>

int main() {

pid_t pid; /* could be int */

int i;

pid = fork();

if(pid > 0) { /* parent */

for(i=0; i < 1000; i++)

printf(“\t\t\tPARENT %d\n”, i);

}

else { /* child */

for(i=0; i < 1000; i++)

printf(“CHILD %d\n”, i);

}

return 0;

}

Copyright ©: University of Illinois CS 241 Staff 37

How can you use
ps to see the

processes that
are created?

Example – fork()

#include <stdio.h>

#include <sys/types.h>

#include <unistd.h>

int main() {

pid_t pid; /* could be int */

int i;

pid = fork();

if(pid > 0) { /* parent */

for(i=0; i < 1000; i++)

printf(“\t\t\tPARENT %d\n”, i);

}

else { /* child */

for(i=0; i < 1000; i++)

printf(“CHILD %d\n”, i);

}

return 0;

}

Copyright ©: University of Illinois CS 241 Staff 38

sleep(30);

How can you use
ps to see the

processes that
are created?

System view of processes

(Next)

 5 state Process Model

 Process Control Block

 Context Switch

Copyright ©: University of Illinois CS 241 Staff 39

