Copyright ©: University of Illinois CS 241 Staff

[Processes

What Is a process?

How do | make one? wait for one? Kill
one?

o Birth

o Life

o Death

Copyright ©: University of Illinois CS 241 Staff

Program or Process?

Process

o A process is the context (the information/data)
maintained for an executing program
An executable instance of a program

o A program can have many processes
o Each process has a unique identifier

Unix processes

o Process #1 is known as the 'init' process (root
of the process hierarchy)

Copyright ©: University of Illinois CS 241 Staff

[What makes up a Process?

Program code
Machine registers
Global data
Stack

Open files

An environment

Copyright ©: University of Illinois CS 241 Staff

Process Context

Process ID (pid) unigue integer
Parent process ID (ppid) unigue integer
Current directory

File descriptor table

Environment VAR=VALUE pairs
Pointer to program code

Pointer to data Mem for global vars
Pointer to stack Mem for local vars
Pointer to heap Dynamically

allocated memory
Execution priority
Signal information

Copyright ©: University of Illinois CS 241 Staff

Unix Processes

Address space

o The address space is a section of memory that contains
the code to execute as well as the process stack

Set of data structures in the kernel to keep track of

that process

Address space map

Current status of the process

Execution priority of the process

Resource usage of the process

Current signal mask

Owner of the process

O O O O O O

Copyright ©: University of Illinois CS 241 Staff

Process Lifetime

Some processes run from system boot to
shutdown

o Servers & Daemons
(e.g. Apache httpd server)

Most processes come and go rapidly, as
tasks start and complete
o 'unit of work' on a modern computer

A process can die a premature, even
horrible death (say, due to a crash)

Copyright ©: University of Illinois CS 241 Staff

[Know yOur Process

Each process has a unigue identifier

int myid = getpid()

What is wrong with
this?

Copyright ©: University of Illinois CS 241 Staff

[Know yOur Process

better...
pid t myid = getpid()
o pid _t: int Inlinux,
o pid _t: long In other systems

Know your parent
pid t myparentid = getppid()

Copyright ©: University of Illinois CS 241 Staff

Process Creation

On creation, process needs resources
o CPU, memory, files, I/O devices

Get resources from the OS or from the
parent process

o Child process is restricted to a subset of parent
resources

o Prevents many processes from overloading
system

Copyright ©: University of Illinois CS 241 Staff

Process Creation

Execution
o Parent continues concurrently with child
o Parent waits until child has terminated

Address space
o Child process is duplicate of parent process
o Child process has a new program loaded into it

Copyright ©: University of Illinois CS 241 Staff

Creating a Process — fork ()

#include <sys/types.h>
#include <unistd.h>
pid t fork(void);

Create a child process

o The child is an (almost) exact copy of the parent

o The new process and the old process both continue Iin
parallel from the statement that follows the fork ()

Returns:

o To child

0 on success

o To parent

process ID of the child process
-1 on error, sets errno

Copyright ©: University of Illinois CS 241 Staff

[Creating a Process — fork ()

Parent
. _ In the child:

pid = fork() ¢ Child | 554 == o
In the
parent: Shared pid ==
pid==the Program
process ID Data Toxt Copy
of the child of Data

A program can use this pid difference to do
different things in the parent and child

Copyright ©: University of Illinois CS 241 Staff 13]

Creating a Process — fork ()

The child process is an exact copy of the
parent process except

O

O

The child process has a unique process ID

The child process has a different parent process
ID (i.e., the process ID of the calling process)

The child process has its own copy of the
parent's file descriptors

and some other stuff about memory and stuff
that we'll learn later ...

Copyright ©: University of Illinois CS 241 Staff

Example — fork ()

int pid;
int status = 0;

if (pid = fork())
/* parent '*/

pid = wait(&status) ;
} else {
/* child’*/

exit (status) ;

Copyright ©: University of Illinois CS 241 Staff

fork returns twice:
Parent: pid == child process ID (pid)
Child: pid ==

Parent uses wait to sleep until the
child exits.

wait returns child pid and status.

Example — fork ()

Challenge:
write code so that child prints
'"CHILD: my id 1is and my parent id 1is '

and parent prints
'"PARENT:my id is and the child's id 1is '

Copyright ©: University of Illinois CS 241 Staff

Example — fork ()

What order will the output be

childpid = fork() ; printed in?
Af [(childpid == 0) | { N

printf ("CHILD: my id is %d and my parent id is
$d.”, getpid(), getppid()):;

exit(0) ;
& %
else {)

printf ("PARENT:my id is %d and the child's id is
%d.”, childpid, getpid()):

exit (0) ;

\ ,/

Copyright ©: University of Illinois CS 241 Staff

Chain and Fan

Chain Fan
Write code to make Code to make N children
chain of one parent process?

Copyright ©: University of Illinois CS 241 Staff

Chain and Fan

Chain Fan
pid t childpid = 0;
for (i=1;i<n;i++)
if (childpid = fork())
break;

Copyright ©: University of Illinois CS 241 Staff

Chain and Fan

Chain Fan
pid t childpid = 0; pid t childpid = 0;
for (i=1l;i<n;i++) for (i=1l;i<n;i++)
if (childpid = fork()) if ((childpid = fork())
break; <=0)
break;

@

Copyright ©: University of Illinois CS 241 Staff

Chain and Fan

Chain Fan
pid t childpid = 0; pid t childpid = 0;
for (i=1l;i<n;i++) for (i=1l;i<n;i++)
if (childpid = fork()) if ((childpid = fork())
break; == —1|
break; What

happens

/\ here?

Copyright ©: University of Illinois CS 241 Staff

Chain and Fan Example (n=4)

n=+4 pid t childpid = 0;
for (i=1l;i<n;i++)
@ @ if ((childpid =
@ @ fork()) == -1)
break;

@ Copyright ©: University of Illinois CS 241 Staff

Example — fork ()

#include <stdio.h>
#include <sys/types.h>
#include <unistd.h>

int main() {
pid t pid; /* could be int */
int 1i;
pid = fork() ;

Copyright ©: University of Illinois CS 241 Staff

Example — fork ()

-

if(pid > 0) {/* parent */ A
for(i=0; i < 1000; i++)
S printf (“\t\t\tPARENT %d\n”, 1i); y
"} else { /* child */)
for(i=0; i < 1000; i++)
printf(“CHILD %d\n”, i);
N Y

return 0;

What will the output be?

Copyright ©: University of Illinois CS 241 Staff

Example — fork ()
[Possible Output

CHILD O

CHIID 1

CHIID 2
PARENT O
PARENT 1
PARENT 2
PARENT 3

CHILD 3

CHILD 4

PARENT 4

Copyright ©: University of Illinois CS 241 Staff

Example — fork ()
[Notes

i Is copied between parent and child

Switching between parent and child
depends on many factors
o Machine load, system process scheduling

I/O buffering effects amount of output shown

Output interleaving i1s nondeterministic
o Cannot determine output by looking at code

Copyright ©: University of Illinois CS 241 Staff

Waiting for a child to finish —
wait ()

#include <sys/types.h>
#include <wait.h>
pid t wait(int *status);

Suspend calling process until child has finished

Returns:

o Process ID of terminated child on success
o -1 on error, sets errno

Parameters:

o status: status information set by wait and evaluated
using specific macros defined for wait.

Copyright ©: University of Illinois CS 241 Staff

Waiting for any child to finish

#include <errno.h>
#include <sys/wait.h>

pid t childpid;
childpid = wait (NULL) ;
if (childpid !'= -1)
printf (“waited for child with pid %1d\n”,

childpid) ;

(see ‘man 2 wait’)

Copyright ©: University of Illinois CS 241 Staff

wait () Function

Allows parent process
to wait (block) until
child finishes

Causes the caller to
suspend execution
until child’s status is
available

errno

cause

ECHILD

Caller has no
unwaited-for
children

EINTR

Function was
interrupted by
signal

EINVAL

Options
parameter of
waitpid was
invalid

Copyright ©: University of Illinois CS 241 Staff

29]

Waiting for a child to finish —
waltpld()

#include <sys/types.h>
#include <wait.h>

pid t waitpid(pid t pid, int *status, int
options) ;

Suspend calling process until child specified by pid
has finished

Returns:

o Process ID of terminated child on success
o 0O If WNOHANG and no child available, sets errno
o -1 on error, sets errno

Parameters:

o status: status information set by wait and evaluated
using specific macros defined for wait.

Copyright ©: University of Illinois CS 241 Staff 30]

Waiting for a child to finish —
waitpid ()

#include <sys/types.h>

#include <wait.h>

pid t waitpid(pid t pid, int *status, int
options) ;

Suspend calling process until child specified by pid

has finished

Parameters:

o pid:
< -1:. wait for any child process whose process group ID is
equal to the absolute value of pid.
-1 wait for any child process (same as wait)

0 wait for any child process whose process group ID is equal
to that of the calling process.

> 0 walit for the child whose process ID is equal to the value
of pid.

Copyright ©: University of Illinois CS 241 Staff 31]

Waiting for a child to finish —
waitpid ()

#include <sys/types.h>

#include <wait.h>

pid t waitpid(pid t pid, int *status, int
options) ;
Suspend calling process until child specified by pid
has finished

Parameters:
O options:
WNOHANG: return immediately if no child has exited.

WUNTRACED. return for children that are stopped, and whose
status has not been reported.

Copyright ©: University of Illinois CS 241 Staff

[When good processes die

Copyright ©: University of Illinois CS 241 Staff

Process Termination

Upon completion of last statement

o A process automatically asks the OS to delete it

o All of the child’s resources are de-allocated

o Child process may return output to parent process

Other termination possibilities: Aborted by parent
Process

o Child has exceeded its usage of some resources

o Task assigned to child is no longer required

o Parentis exiting and OS does not allow child to continue
without parent

Copyright ©: University of Illinois CS 241 Staff

Process Termination

Voluntary Involuntary
termination termination
o Normal exit o Fatal error
End of main () Divide by O, core
o Error exit dump / seg fault
exit (2) o Killed by another
process

kill proclD, end
task

Copyright ©: University of Illinois CS 241 Staff

[How to List all Processes?

On Windows: run Windows task
manager

o Hit Control+ALT+delete
o Click on the “processes” tab

On UNIX

o > ps -—e also, pstree
o Try ‘man ps’

Copyright ©: University of Illinois CS 241 Staff

Example — fork ()

#include <stdio.h>
#include <sys/types.h>
#include <unistd.h>

int main() {

pid_t pid; /* could be int */
int 1i;

pid = fork();

if(pid > 0) { /* parent */

for(i=0; i < 1000; i++)
printf (“\t\t\tPARENT %d\n”, i);
}
else { /* child */
for(i=0; i < 1000; i++)
printf(“CHILD %d\n”, i);
}

return O;

Copyright ©: University of Illinois CS 241 Staff

How can you use
ps to see the
processes that

are created?

Example — fork ()

#include <stdio.h> How can you use
#include <sys/types.h> ps to see the

#include <unistd.h>
processes that

int main() { are created?
pid_t pid; /* could be int */
int 1i;
pid = fork();
if(pid > 0) { /* parent */

for(i=0; i < 1000; i++)
printf (“\t\t\tPARENT %d\n”, i);
}
else { /* child */
for(i=0; i < 1000; i++)
printf(“CHILD %d\n”, i);
}

~
return O;

sleep (30) ;

Copyright ©: University of Illinois CS 241 Staff

System view of processes
(Next)

5 state Process Model
Process Control Block
Context Switch

Copyright ©: University of Illinois CS 241 Staff

