
Copyright ©: University of Illinois CS 241 Staff 1

CS241 Systems Programming

System Calls and I/O

This lecture

 Goals

 Get you familiar with necessary basic system & I/O calls to

do programming

 Things covered in this lecture

 Basic file system calls

 I/O calls

 Signals

 Note: we will come back later to discuss the above

things at the concept level

Copyright ©: University of Illinois CS 241 Staff 2

System Calls versus Function

Calls?

Copyright ©: University of Illinois CS 241 Staff 3

Process

Caller and callee are in the same

Process

- Same user

- Same “domain of trust”

Function Call

System Calls versus Function

Calls

Copyright ©: University of Illinois CS 241 Staff 4

fnCall()

System Calls versus Function

Calls

Copyright ©: University of Illinois CS 241 Staff 5

fnCall()

Process

Caller and callee are in the same

Process

- Same user

- Same “domain of trust”

Function Call

sysCall()

Process

System Call

OS

- OS is trusted; user is not.

- OS has super-privileges; user does not

- Must take measures to prevent abuse

System Calls

 System Calls

 A request to the operating system to perform some activity

 System calls are expensive

 The system needs to perform many things before

executing a system call

 The computer (hardware) saves its state

 The OS code takes control of the CPU, privileges are

updated.

 The OS examines the call parameters

 The OS performs the requested function

 The OS saves its state (and call results)

 The OS returns control of the CPU to the caller

Copyright ©: University of Illinois CS 241 Staff 6

Steps for Making a System

Call (Example: read call)

Copyright ©: University of Illinois CS 241 Staff 7

1 – 3: Push

parameter (in

reverse order)

4 – 5: Library call

6: Switch to kernel

mode

7: Find system call

handler

8: Run handler

9: Return to user

mode

10: Return to user

program

11: Clean up

Examples of System Calls

 Examples

 getuid() //get the user ID

 fork() //create a child process

 exec() //executing a program

 Don’t mix system calls with standard library

calls

 Differences?

 Is printf() a system call?

 Is rand() a system call?

Copyright ©: University of Illinois CS 241 Staff 8

man syscalls

Major System Calls

Process Management

pid = fork() Create a child process identical to the parent

pid = waitpid(pid, &statloc, options) Wait for a child to terminate

s = execve(name, argv, environp) Replace a process’ core image

exit(status) Terminate process execution and return status

Copyright ©: University of Illinois CS 241 Staff 9

File Management

fd = open(file, how, ...) Open a file for reading, writing or both

s = close(fd) Close an open file

n = read(fd, buffer, nbytes) Read data from a file into a buffer

n = write(fd, buffer, nbytes) Write data from a buffer into a file

position = lseek(fd, offset, whence) Move the file pointer

s = stat(name, &buf) Get a file’s status information

Directory and File System Management

s = mkdir(name, mode) Create a new directory

s = rmdir(name) Remove an empty directory

s = link(name, name) Create a new entry, name, pointing to name

s = unlink(name) Remove a directory entry

s = mount(special, name, flag) Mount a file system

s = umount(special) Unmount a file system

Major System Calls

Miscellaneous

s = chdir(dirname) Change the working directory

s = chmod(name, mode) Change a file’s protection bits

s = kill(pid, signal) Send a signal to a process

seconds = time(&seconds) Get the elapsed time since January 1, 1970

Copyright ©: University of Illinois CS 241 Staff 10

File System and I/O Related

System Calls

 A file system

 A hierarchical arrangement of directories.

 Unix file system

 Root file system starts with “/”

Copyright ©: University of Illinois CS 241 Staff 11

Why does the OS control I/O?

 Safety

 The computer must ensure that if a program has

a bug in it, then it doesn't crash or mess up

 The system

 Other programs that may be running at the same time

or later

 Fairness

 Make sure other programs have a fair use of

device

Copyright ©: University of Illinois CS 241 Staff 12

Basic Unix Concepts

 Input/Output – I/O

 Per-process table of I/O channels

 Table entries describe files, sockets, devices, pipes, etc.

 Table entry/index into table called “file descriptor”

 Unifies I/O interface

Copyright ©: University of Illinois CS 241 Staff 13

user space

pipe

file

socket
process file

descriptor

table

kernel
system open file

table

Basic Unix Concepts

 Error Model
 errno variable

 Unix provides a globally accessible integer variable that contains an
error code number

 Return value

 0 on success

 -1 on failure for functions returning integer values

 NULL on failure for functions returning pointers

 Examples (see errno.h)
#define EPERM 1 /* Operation not permitted */

#define ENOENT 2 /* No such file or directory */

#define ESRCH 3 /* No such process */

#define EINTR 4 /* Interrupted system call */

#define EIO 5 /* I/O error */

#define ENXIO 6 /* No such device or address */

Copyright ©: University of Illinois CS 241 Staff 14

System Calls for I/O

 Get information about a file

int stat(const char* name, struct stat* buf);

 Open (and/or create) a file for reading, writing or both
int open (const char* name, in flags);

 Read data from one buffer to file descriptor
size_t read (int fd, void* buf, size_t cnt);

 Write data from file descriptor into buffer
size_t write (int fd, void* buf, size_t cnt);

 Close a file
int close(int fd);

Copyright ©: University of Illinois CS 241 Staff 15

System Calls for I/O

 They look like regular procedure calls but

are different

 A system call makes a request to the operating

system

 A procedure call just jumps to a procedure

defined elsewhere in your program

 Some library procedure calls may

themselves make a system call

 e.g., fopen() calls open()

Copyright ©: University of Illinois CS 241 Staff 16

File: Statistics

#include <sys/stat.h>

int stat(const char* name, struct stat* buf);

 Get information about a file

 Returns:
 0 on success

 -1 on error, sets errno

 Parameters:
 name: Path to file you want to use

 Absolute paths begin with “/”, relative paths do not

 buf: Statistics structure
 off_t st_size: Size in bytes

 time_t st_mtime: Date of last modification. Seconds since January 1,
1970

Copyright ©: University of Illinois CS 241 Staff 17

File: Open

#include <sys/types.h>

#include <sys/stat.h>

#include <fcntl.h>

int open (const char* path, int flags [, int mode]);

 Open (and/or create) a file for reading, writing or both

 Returns:
 Return value 0 : Success - New file descriptor on success

 Return value = -1: Error, check value of errno

 Parameters:

 path: Path to file you want to use
 Absolute paths begin with “/”, relative paths do not

 flags: How you would like to use the file
 O_RDONLY: read only, O_WRONLY: write only, O_RDWR: read and write,

O_CREAT: create file if it doesn’t exist, O_EXCL: prevent creation if it already
exists

Copyright ©: University of Illinois CS 241 Staff 18

Example (open())

#include <fcntl.h>

#include <errno.h>

extern int errno;

main() {

int fd;

fd = open("foo.txt", O_RDONLY);

printf("%d\n", fd);

if (fd=-1) {

printf ("Error Number %d\n", errno);

perror("Program");

}

}

Copyright ©: University of Illinois CS 241 Staff 19

File: Close

#include <fcntl.h>

int close(int fd);

 Close a file

 Tells the operating system you are done with a file

descriptor

 Return:

 0 on success

 -1 on error, sets errno

 Parameters:

 fd: file descriptor

Copyright ©: University of Illinois CS 241 Staff 20

Example (close())

#include <fcntl.h>

main(){

int fd1;

if((fd1 = open(“foo.txt", O_RDONLY)) < 0){

perror("c1");

exit(1);

}

if (close(fd1) < 0) {

perror("c1");

exit(1);

}

printf("closed the fd.\n");

Copyright ©: University of Illinois CS 241 Staff 21

Example (close())

#include <fcntl.h>

main(){

int fd1;

if((fd1 = open(“foo.txt", O_RDONLY)) < 0){

perror("c1");

exit(1);

}

if (close(fd1) < 0) {

perror("c1");

exit(1);

}

printf("closed the fd.\n");

Copyright ©: University of Illinois CS 241 Staff 22

After close, can you still use the

file descriptor?

Why do we need to close a file?

File: Read

#include <fcntl.h>

size_t read (int fd, void* buf, size_t cnt);

 Read data from one buffer to file descriptor
 Read size bytes from the file specified by fd into the memory location

pointed to by buf

 Return: How many bytes were actually read

 Number of bytes read on success

 0 on reaching end of file

 -1 on error, sets errno

 -1 on signal interrupt, sets errno to EINTR

 Parameters:

 fd: file descriptor

 buf: buffer to read data from

 cnt: length of buffer

Copyright ©: University of Illinois CS 241 Staff 23

File: Read

size_t read (int fd, void* buf, size_t cnt);

 Things to be careful about

 buf needs to point to a valid memory location with length

not smaller than the specified size

 Otherwise, what could happen?

 fd should be a valid file descriptor returned from open()

to perform read operation

 Otherwise, what could happen?

 cnt is the requested number of bytes read, while the

return value is the actual number of bytes read

 How could this happen?

Copyright ©: University of Illinois CS 241 Staff 24

Example (read())

#include <fcntl.h>

main() {

char *c;

int fd, sz;

c = (char *) malloc(100

* sizeof(char));

fd = open(“foo.txt",

O_RDONLY);

if (fd < 0) {

perror("r1");

exit(1);

}

sz = read(fd, c, 10);

printf("called

read(%d, c, 10).

returned that %d

bytes were

read.\n", fd, sz);

c[sz] = '\0';

printf("Those bytes

are as follows:

%s\n", c);

close(fd);

}

Copyright ©: University of Illinois CS 241 Staff 25

File: Write

#include <fcntl.h>

size_t write (int fd, void* buf, size_t cnt);

 Write data from file descriptor into buffer

 Writes the bytes stored in buf to the file specified by fd

 Return: How many bytes were actually written

 Number of bytes written on success

 0 on reaching end of file

 -1 on error, sets errno

 -1 on signal interrupt, sets errno to EINTR

 Parameters:

 fd: file descriptor

 buf: buffer to write data to

 cnt: length of buffer

Copyright ©: University of Illinois CS 241 Staff 26

File: Write

size_t write (int fd, void* buf, size_t cnt);

 Things to be careful about

 The file needs to be opened for write operations

 buf needs to be at least as long as specified by

cnt

 If not, what will happen?

 cnt is the requested number of bytes to write,

while the return value is the actual number of

bytes written

 How could this happen?

Copyright ©: University of Illinois CS 241 Staff 27

Example (write())

#include <fcntl.h>

main()

{

int fd, sz;

fd = open("out3",

O_RDWR | O_CREAT |

O_APPEND, 0644);

if (fd < 0) {

perror("r1");

exit(1);

}

sz = write(fd, "cs241\n",

strlen("cs241\n"));

printf("called write(%d,

\"cs360\\n\", %d).

it returned %d\n",

fd, strlen("cs360\n"),

sz);

close(fd);

}

Copyright ©: University of Illinois CS 241 Staff 28

File Pointers

 All open files have a "file pointer" associated

with them to record the current position for

the next file operation

 On open

 File pointer points to the beginning of the file

 After reading/write m bytes

 File pointer moves m bytes forward

Copyright ©: University of Illinois CS 241 Staff 29

File: Seek

#include <unistd.h>

off_t lseek(int fd, off_t offset, int whence);

 Explicitly set the file offset for the open file

 Return: Where the file pointer is
 the new offset, in bytes, from the beginning of the file

 -1 on error, sets errno, file pointer remains unchanged

 Parameters:
 fd: file descriptor

 offset: indicates relative or absolute location

 whence: How you would like to use lseek
 SEEK_SET, set file pointer to offset bytes from the beginning of the file

 SEEK_CUR, set file pointer to offset bytes from current location

 SEEK_END, set file pointer to offset bytes from the end of the file

Copyright ©: University of Illinois CS 241 Staff 30

File: Seek Examples

 Random access

 Jump to any byte in a file

 Move to byte #16
newpos = lseek(fd, 16, SEEK_SET);

 Move forward 4 bytes
newpos = lseek(fd, 4, SEEK_CUR);

 Move to 8 bytes from the end
newpos = lseek(fd, -8, SEEK_END);

Copyright ©: University of Illinois CS 241 Staff 31

Example (lseek())

c = (char *) malloc(100 *

sizeof(char));

fd = open(“foo.txt", O_RDONLY);

if (fd < 0) {

perror("r1");

exit(1);

}

sz = read(fd, c, 10);

printf("We have opened in1, and

called read(%d, c, 10).\n",

fd);

c[sz] = '\0';

printf("Those bytes are as

follows: %s\n", c);

i = lseek(fd, 0, SEEK_CUR);

printf("lseek(%d, 0, SEEK_CUR)

returns that the current

offset is %d\n\n", fd, i);

printf("now, we seek to the

beginning of the file and

call read(%d, c, 10)\n",

fd);

lseek(fd, 0, SEEK_SET);

sz = read(fd, c, 10);

c[sz] = '\0';

printf("The read returns the

following bytes: %s\n", c);

…

Copyright ©: University of Illinois CS 241 Staff 32

Standard Input, Standard

Output and Standard Error

 Every process in Unix has three predefined file descriptors

 File descriptor 0 is standard input (STDIN)

 File descriptor 1 is standard output (STDOUT)

 File descriptor 2 is standard error (STDERR)

 Read from standard input,

 read(0, ...);

 Write to standard output

 write(1, ...);

 Two additional library functions

 printf();

 scanf();

Copyright ©: University of Illinois CS 241 Staff 33

I/O Library Calls

 Every system call has paired procedure calls from the

standard I/O library:

 System Call
 open

 close

 read/write

 lseek

 Standard I/O call (stdio.h)

 fopen

 fclose

 getchar/putchar,

getc/putc, fgetc/fputc,

fread/fwrite,

gets/puts, fgets/fputs,

scanf/printf,

fscanf/fprintf

 fseek

Copyright ©: University of Illinois CS 241 Staff 34

