CS241 Systems Programming
System Calls and I/0

This lecture

Goals

o Get you familiar with necessary basic system & I/O calls to
do programming

Things covered in this lecture
o Basic file system calls

o 1/O calls

o Signals

Note: we will come back later to discuss the above
things at the concept level

Copyright ©: University of Illinois CS 241 Staff 2]

System Calls versus Function
[Calls’?

Copyright ©: University of Illinois CS 241 Staff

System Calls versus Function
Calls

Function Call

Process

fnCall ()

Caller and callee are in the same
Process

- Same user

- Same “domain of trust”

Copyright ©: University of Illinois CS 241 Staff

System Calls versus Function

Calls

Function Call System Call
Process Process
fnCall () sysCall ()
oS

Caller and callee are in the same
Process

- Same user - OS is trusted; user is not.

- Same “domain of trust” - OS has super-privileges; user does not

- Must take measures to prevent abuse

Copyright ©: University of Illinois CS 241 Staff

5

System Calls

System Calls
o Arequest to the operating system to perform some activity

System calls are expensive
o The system needs to perform many things before
executing a system call
The computer (hardware) saves its state

The OS code takes control of the CPU, privileges are
updated.

The OS examines the call parameters

The OS performs the requested function

The OS saves its state (and call results)

The OS returns control of the CPU to the caller

Copyright ©: University of Illinois CS 241 Staff

Steps for Making a System

Call (Example: read call)

Address

OXFFFFFFFF _

Return to caller

6: Switch to kernel I

Trap to the kernel

mode

User space <

5] Put code for read in register

Increment SP 11

10,

4 —5: Library call I

+ Call read

Push fd

1 —3: Push :
parameter (in
reverse order)

Kernel space
(Operating system)

AL

or

Push &buffer

%
> 2

Push nbytes

s (:Find system call
|'| handler

9: Return to user

] mode

;

Library
procedure

read 10: Return to user

1 program

11: Clean up

A%

7 8

Sys
han

Dispatch

call
dler

User program
calling read

8: Run handler

A

Examples of System Calls

Examples

o getuid() //getthe userID

o fork () //create a child process
o exec() //executing a program

Don’t mix system calls with standard library
calls

o Differences?
o Isprintf£ () a system call?

o Isrand() asystem call?

man syscalls

Copyright ©: University of Illinois CS 241 Staff

Major System Calls

Process Management

pid = fork()

Create a child process identical to the parent

pid = waitpid(pid, &statloc,

options) Wait for a child to terminate

s = execve (name, argv, environp) Replace a process’ core image

exit (status)

Terminate process execution and return status

File Management

fd = open(file, how,

Open a file for reading, writing or both

close (£d)

Close an open file

read (fd, buffer, nbytes)

Read data from a file into a buffer

write (fd, buffer, nbytes)

Write data from a buffer into a file

position = lseek(fd, offset,

whence) Move the file pointer

s = stat(name, &buf)

Get a file’s status information

Copyright ©: University of Illinois CS 241 Staff

Major System Calls

Directory and File System Management

s = mkdir (name, mode) Create a new directory

s = rmdir (name) Remove an empty directory

s = link(name, name) Create a new entry, name, pointing to name
s = unlink (name) Remove a directory entry

s = mount (special, name, flagq) Mount a file system

s = umount (special) Unmount a file system

Miscellaneous

s = chdir (dirname) Change the working directory

s = chmod (name, mode) Change a file’s protection bits

s = kill (pid, signal) Send a signal to a process

seconds = time (&seconds) Get the elapsed time since January 1, 1970

Copyright ©: University of Illinois CS 241 Staff

File System and |I/O Related
[System Calls

A file system
o A hierarchical arrangement of directories.

Unix file system
o Root file system starts with “/”

Copyright ©: University of Illinois CS 241 Staff

Why does the OS control I1/0O?

Safety

o The computer must ensure that if a program has
a bug in it, then it doesn't crash or mess up
The system

Other programs that may be running at the same time
or later

Fairness

o Make sure other programs have a fair use of
device

Copyright ©: University of Illinois CS 241 Staff

Basic Unix Concepts

= Input/Output - 1/0
o Per-process table of I/O channels
o Table entries describe files, sockets, devices, pipes, etc.
o Table entry/index into table called “file descriptor”
o Unifies I/O interface

user space kernel :
system open file fi
ile
table
__——1 pipe
process file

descriptor T socket

table P

®

Copyright ©: University of Illinois CS 241 Staff)

Basic Unix Concepts

Error Model

o errno variable

Unix provides a globally accessible integer variable that contains an
error code number

o Return value
0 on success
-1 on failure for functions returning integer values
NULL on failure for functions returning pointers
o Examples (see errno.h)
#define EPERM 1 /* Operation not permitted */
#define ENOENT /* No such file or directory */
#define ESRCH /* No such process */

2
3
#define EINTR 4 /* Interrupted system call */
#define EIO 5 /* I/O0 error */

6

##define ENXIO /* No such device or address */

Copyright ©: University of Illinois CS 241 Staff

System Calls for I/O

Get information about a file
int stat(const char* name, struct stat* buf);

Open (and/or create) a file for reading, writing or both
int open (const char* name, in flags);

Read data from one buffer to file descriptor

size t read (int £fd, void* buf, size t cnt);
Write data from file descriptor into buffer

size t write (int £fd, void* buf, size t cnt);

Close a file
int close(int £d) ;

Copyright ©: University of Illinois CS 241 Staff

System Calls for I/O

They look like regular procedure calls but
are different

o A system call makes a request to the operating
system

o A procedure call just jJumps to a procedure
defined elsewhere in your program

Some library procedure calls may
themselves make a system call
o e.g., fopen () calls open ()

Copyright ©: University of Illinois CS 241 Staff

File: Statistics

#include <sys/stat.h>
int stat(const char* name, struct stat* buf);

Get information about a file

Returns:
o 0 on success
o -1 o0n error, sets errno

Parameters:
O name: Path to file you want to use
Absolute paths begin with “/”, relative paths do not

o buf: Statistics structure
off t st_size: Size in bytes

time t st_mtime: Date of last modification. Seconds since January 1,
1970

Copyright ©: University of Illinois CS 241 Staff

File: Open

#include <sys/types.h>

#include <sys/stat.h>

#include <fcntl.h>

int open (const char* path, int flags [, int mode]);

Open (and/or create) a file for reading, writing or both

Returns:

o Return value > 0 : Success - New file descriptor on success
o Return value = -1: Error, check value of errno

Parameters:

o path: Path to file you want to use
Absolute paths begin with “/”, relative paths do not

o flags: How you would like to use the file

O_RDONLY: read only, O WRONLY: write only, O RDWR: read and write,
0 CREAT: create file if it doesn’t exist, O_EXCL: - prevent creation if it already
exists

Copyright ©: University of Illinois CS 241 Staff 18]

Example (open ())

#include <fcntl.h>
#include <errno.h>
extern int errno;

main() {
int f£d4;
| fd = open("foo.txt", O RDONLY) ; |
printf ("$d\n", £d);
| if (£fd=-1) { |
printf ("Error Number %d\n",lerrno)l

| perror ("Program") ; |

Copyright ©: University of Illinois CS 241 Staff

File: Close

#include <fcntl.h>
int close(int £d4d);

Close a file

o Tells the operating system you are done with a file
descriptor

Return:

o 0 on success
o -1 on error, sets errno

Parameters:
o £d: file descriptor

Copyright ©: University of Illinois CS 241 Staff

Example (close())

#include <fcntl.h>
main () {
int £d1;

if((£fdl1 = open(“foo.txt", O RDONLY)) < 0) {
perror ("cl");
exit(1l);
}
if |(close (£d1)| < 0) {
perror ("cl") ;
exit(1l);

}
printf ("closed the fd.\n");

Copyright ©: University of Illinois CS 241 Staff

Example (close())

#include <fcntl.h>
main () {
int £d1l;

if((£fdl1 = open(“foo.txt", O RDONLY)) < 0) {

perror ("cl");

exit(1l);
} After close, can you still use the
if (close(£dl) < 0) | file descriptor?

perror ("cl") ;

exit (1) ; Why do we need to close afile?

}
printf ("closed the fd.\n");

Copyright ©: University of Illinois CS 241 Staff 22]

File: Read

#include <fcntl.h>
size t read (int £fd, void* buf, size t cnt);

Read data from one buffer to file descriptor

o Read size bytes from the file specified by £d into the memory location
pointed to by buf

Return: How many bytes were actually read
o Number of bytes read on success

o 0 on reaching end of file

o -1on error, sets errno

o -1 on signal interrupt, sets errno to EINTR

Parameters:

o £d: file descriptor

o buf: buffer to read data from
o ent: length of buffer

Copyright ©: University of Illinois CS 241 Staff

File: Read

size t read (int £fd, void* buf, size t cnt);

Things to be careful about
o buf needs to point to a valid memory location with length
not smaller than the specified size
Otherwise, what could happen?
o £d should be a valid file descriptor returned from open ()
to perform read operation
Otherwise, what could happen?
o ent Is the requested number of bytes read, while the
return value is the actual number of bytes read
How could this happen?

Copyright ©: University of Illinois CS 241 Staff

Example (read ())

#include <fcntl.h> |sz = read(fd, c, 10);

main () { printf ("called
char *c; read(%d, c, 10).
int f£d, sz; returned that %d
bytes were
c¢c = (char *) malloc (100 read.\n", f£d, sz);
* sizeof (char)) ; c[sz] = '\0';

fd = open (“foo.txt",

O_RDONLY) ;
if (£d < 0) {
perror ("rl") ;
exit(1l);

Copyright ©: University of Illinois CS 241 Staff

}

printf ("Those bytes
are as follows:
$s\n", c);
close (£f4d) ;

File: Write

#include <fcntl.h>

size t write (int £fd, void* buf, size t cnt);
Write data from file descriptor into buffer
o Writes the bytes stored in buf to the file specified by £d

Return: How many bytes were actually written
o Number of bytes written on success

o 0 on reaching end of file

o -1 on error, sets errno

o -1 on signal interrupt, sets errno to EINTR

Parameters:

o £d: file descriptor

o buf: buffer to write data to
o ent: length of buffer

Copyright ©: University of Illinois CS 241 Staff

File: Write

size t write (int £fd, void* buf, size t cnt);

Things to be careful about

O
O

The file needs to be opened for write operations

buf needs to be at least as long as specified by
cnt

If not, what will happen?

cnt Is the requested number of bytes to write,

while the return value iIs the actual number of
bytes written

How could this happen?

Copyright ©: University of Illinois CS 241 Staff

Example (write ())

#include <fcntl.h> sz = write(fd, "cs241\n",
main () strlen("cs241\n")) ;
{
int £d4d, sz; printf ("called write (%d,
\"cs360\\n\", %d).
fd = open("out3", it returned %d\n",
O RDWR | O CREAT | fd, strlen("cs360\n"),
O APPEND, 0644); sz) ;
if (£d < 0) {
perror ("rl") ; close (£d) ;
exit (1) ; }

Copyright ©: University of Illinois CS 241 Staff

File Pointers

All open files have a "file pointer" associated
with them to record the current position for
the next file operation

On open
o File pointer points to the beginning of the file

After reading/write m bytes
o File pointer moves m bytes forward

Copyright ©: University of Illinois CS 241 Staff

File: Seek

#include <unistd.h>
off t lseek(int fd, off t offset, int whence);

Explicitly set the file offset for the open file

Return: Where the file pointer is
o the new offset, in bytes, from the beginning of the file
o -1on error, sets errno, file pointer remains unchanged

Parameters:
o £d: file descriptor
o offset: Indicates relative or absolute location

o whence: How you would like to use 1seek
SEEK_SET, set file pointer to of£set bytes from the beginning of the file
SEEK_CUR, set file pointer to of£set bytes from current location
SEEK_END, set file pointer to of£set bytes from the end of the file

Copyright ©: University of Illinois CS 241 Staff

File: Seek Examples

Random access
o Jump to any byte in a file

Move to byte #16

newpos = lseek(fd, 16, SEEK SET);

Move forward 4 bytes
newpos = lseek(fd, 4, SEEK CUR);

Move to 8 bytes from the end
newpos = lseek(fd, -8, SEEK END);

Copyright ©: University of Illinois CS 241 Staff

Example (1seek ())

¢ = (char *) malloc (100 * i = lseek(fd, 0, SEEK CUR);
sizeof (char)) ; prin seek (sd, O,

fd = open(“foo.txt", O _RDONLY) ; returns that the curréht
if (£d < 0) { offset is %d\n\n", £d, i);

perror ("rl") ;

exit (1) ; printf ("now, we seek to the
beginning of the file and
call read(%d, c, 10)\n",
f4d) ;

sz_= read(fd, c, 10); _ lseek (fd, 0, SEEK SET);

printf ("We have opened inl, and sz = read(fd, c, 10).;

called read(%d, c, 10).\n",

c[sz] = '\0';

£d) ;
printf ("The read returns the

c[sz] = '\0';)
_ following bytes: %$s\n", c);
printf ("Those bytes are as

follows: %s\n", c);

Copyright ©: University of Illinois CS 241 Staff 32]

Standard Input, Standard
Output and Standard Error

Every process in Unix has three predefined file descriptors
o File descriptor O is standard input (STDIN)

o File descriptor 1 is standard output (STDOUT)

o File descriptor 2 is standard error (STDERR)

Read from standard input,

o read(0, ...);
Write to standard output
o write(l, ...);

Two additional library functions
O printf () ;

o scanf () ;

Copyright ©: University of Illinois CS 241 Staff

/O Library Calls

Every system call has paired procedure calls from the
standard I/O library:

System Call Standard I/O call (stdio.h)

O open o fopen
o close o fclose

o read/write o getchar/putchar,
getc/putc, fgetc/fputc,
fread/fwrite,
gets/puts, fgets/fputs,
scanf/printf,
fscanf/fprintf

o lseek o fseek

Copyright ©: University of Illinois CS 241 Staff

