
Copyright ©: University of Illinois CS 241 Staff 1

Operating Systems

Orientation

Objectives

 Explain the main purpose of operating systems and describe

milestones of OS evolution

 Explain fundamental machine concepts

 Instruction processing

 Memory hierarchy

 Interrupts

 I/O

 Explain fundamental OS concepts

 System calls

 Processes

 Synchronization

 Files

 Explain the POSIX standard (UNIX specification)

Copyright ©: University of Illinois CS 241 Staff 2

OS Structure

Copyright ©: University of Illinois CS 241 Staff 33

Firefox Second Life
Yahoo

Chat
GMail

Application Software

NetworkHardware

Read/Write
Standard

Output

Device

Control

File

System
Communication

Operating System

Standard Operating System Interface (Virtual Machine)

POSIX

The UNIX Interface Standard

Copyright ©: University of Illinois CS 241 Staff 4

Firefox Second Life
Yahoo

Chat
GMail

Application Software

Read/Write
Standard

Output

Device

Control

File

System
Communication

Unix

POSIX Standard Interface

What is an Operating System?

 It is an extended machine

 Hides the messy details that must be performed

 Presents user with a virtual machine interface,

easier to use

 It is a resource manager

 Each program gets time with the resource

 Each program gets space on the resource

Copyright ©: University of Illinois CS 241 Staff 5

Machine-dependent layer

A Peek into Unix

Copyright ©: University of Illinois CS 241 Staff 6

Application

Portable OS Layer

Libraries User space/level

Kernel space/level

• User/kernel modes are

supported by hardware

•Some systems do not have

clear user-kernel boundary

Machine-dependent layer

Application

Copyright ©: University of Illinois CS 241 Staff 7

Applications

(Firefox, Emacs, grep)

Portable OS Layer

Libraries

• Written by programmer

• Compiled by

programmer

• Uses function calls

Machine-dependent layer

Unix: Libraries

Copyright ©: University of Illinois CS 241 Staff 8

Application

Portable OS Layer

Libraries (e.g., stdio.h)

• Provided pre-compiled

• Defined in headers

• Input to linker (compiler)

• Invoked like functions

• May be “resolved” when

program is loaded

Machine-dependent layer

Typical Unix OS Structure

Copyright ©: University of Illinois CS 241 Staff 9

Application

Portable OS Layer

Libraries

• System calls (read,

open..)

• All “high-level” code

Machine-dependent layer

Typical Unix OS Structure

Copyright ©: University of Illinois CS 241 Staff 10

Application

Portable OS Layer

Libraries • Bootstrap

• System initialization

• Interrupt and exception

• I/O device driver

• Memory management

• Kernel/user mode

switching

• Processor management

History of Computer

Generations

 Pre-computing generation 1792 - 1871

 Babbage’s “Analytical Engine”, first programming language

 First generation 1945 – 1955

 Vacuum tubes, plug boards

 Second generation 1955 - 1965

 Transistors, batch systems, mainframes

 Third generation 1965 – 1980

 ICs and multiprogramming

 Fourth generation 1980 – present

 Personal computers

Copyright ©: University of Illinois CS 241 Staff 11

History of Operating Systems

 Early systems

 bring cards to 1401

 read cards to tape

 put tape on 7094 which does computing

 put tape on 1401 which prints output

Copyright ©: University of Illinois CS 241 Staff 12

History of Operating Systems

 Structure of a typical job

 2nd generation

Copyright ©: University of Illinois CS 241 Staff 13

History of Operating Systems

 Multiprogramming/timesharing system

 Three jobs in memory – 3rd generation

Copyright ©: University of Illinois CS 241 Staff 14

Memory

Management

Process

Management

Computer Hardware Review

 Components of a simple personal computer

Copyright ©: University of Illinois CS 241 Staff 15

Bus

Monitor

Early Pentium system

Copyright ©: University of Illinois CS 241 Staff 16

Computer Hardware Review

 Components of a simple personal computer

Copyright ©: University of Illinois CS 241 Staff 17

CPU

Bus

Monitor

Computer

operation and

data processing

CPU , From CS231

 Fetch instruction from code memory

 Fetch operands from data memory

 Perform operation (and store result)

 (Check interrupt line)

 Go to next instruction

 'Conventional CPU'

(Ignore pipeline, optimization complexities)

Copyright ©: University of Illinois CS 241 Staff 18

Computer Hardware Review

 Components of a simple personal computer

Copyright ©: University of Illinois CS 241 Staff 19

Memory

Bus

Monitor

CPU

Stores data

and

programs

Communication

between CPU,

Memory and I/O

CPU Registers

 Fetch instruction from code memory

 Fetch operands from data memory

 Perform operation (and store result)

 Go to next instruction

 Note: CPU must maintain certain state

 Current instructions to fetch (program counter)

 Location of code memory segment

 Location of data memory segment

Copyright ©: University of Illinois CS 241 Staff 20

CPU Register Examples

 Hold instruction operands

 Point to start of

 Code segment

 Data segment

 Stack segment

 Point to current position of

 Instruction pointer

 Stack pointer

Copyright ©: University of Illinois CS 241 Staff 21

CPU Register Examples

 Hold instruction operands

 Point to start of

 Code segment

 Data segment

 Stack segment

 Point to current position of

 Instruction pointer

 Stack pointer

 Why stack?

Copyright ©: University of Illinois CS 241 Staff 22

Command-line arguments

and environment variables

Uninitialized static data

Initialized static data

Program text

Sample Layout for program

image in main memory

Copyright ©: University of Illinois CS 241 Staff 23

Processes have three
segments: text, data, stack

stack

heap

Allocations from malloc family

Activation record for function calls

(return address, parameters,

saved registers, automatic variables

argc, argv, environmentHigh address

Low address

Memory Hierarchy

 Locality of reference

Copyright ©: University of Illinois CS 241 Staff 24

1 KB

128 MB

4 GB

1TB

10 TB

1. Decreasing

cost per bit

2. Increasing

capacity

3. Increasing

access time

4. Decreasing

frequency

of access

Computer Hardware Review

 Components of a simple personal computer

Copyright ©: University of Illinois CS 241 Staff 25

Bus
Memory

I/O

Devices

Bus

Monitor

CPU
I/O

Devices

I/O

Devices

I/O

Devices

Move data

between

computer and

external

environment

I/O Interrupt Mechanism

 Steps in starting an I/O device and getting interrupt

 How the CPU is interrupted

Copyright ©: University of Illinois CS 241 Staff 26

(a) (b)

Operating System Concepts

 Process

 An executable instance

of a program

 Only one process can

use the CPU at a time

 A process tree

 A created two child

processes, B and C

 B created three child

processes, D, E, and F

Copyright ©: University of Illinois CS 241 Staff 27

A

B C

E FD

Operating System Concepts

 Context Switching

 How would you switch CPU execution from one

process to another?

 Semaphores

 Control access to resources

 Inter-process Communication

 Two processes connected by a data/control pipe

Copyright ©: University of Illinois CS 241 Staff 28

A B
Pipe

Shared Resources, Conflicts,

and Deadlocks

Copyright ©: University of Illinois CS 241 Staff 29

(a) A potential deadlock (b) An actual deadlock

System Times

Item Time Scaled Time in Human

Terms (2 billion times

slower)

Processor cycle 0.5 ns (2 GHz) 1 s

Cache access 1 ns (1 GHz) 2 s

Memory access 15 ns 30 s

Context switch 5,000 ns (5 micros) 167 m

Disk access 7,000,000 ns (7 ms) 162 days

System quanta 100,000,000 (100 ms) 6.3 years

Copyright ©: University of Illinois CS 241 Staff 30

Summary

 Resource Manager

 Hardware independence

 Virtual Machine Interface

 POSIX

 Concurrency & Deadlock

Copyright ©: University of Illinois CS 241 Staff 31

