
Copyright ©: University of Illinois CS 241 Staff 1

Operating Systems

Orientation

Objectives

 Explain the main purpose of operating systems and describe

milestones of OS evolution

 Explain fundamental machine concepts

 Instruction processing

 Memory hierarchy

 Interrupts

 I/O

 Explain fundamental OS concepts

 System calls

 Processes

 Synchronization

 Files

 Explain the POSIX standard (UNIX specification)

Copyright ©: University of Illinois CS 241 Staff 2

OS Structure

Copyright ©: University of Illinois CS 241 Staff 33

Firefox Second Life
Yahoo

Chat
GMail

Application Software

NetworkHardware

Read/Write
Standard

Output

Device

Control

File

System
Communication

Operating System

Standard Operating System Interface (Virtual Machine)

POSIX

The UNIX Interface Standard

Copyright ©: University of Illinois CS 241 Staff 4

Firefox Second Life
Yahoo

Chat
GMail

Application Software

Read/Write
Standard

Output

Device

Control

File

System
Communication

Unix

POSIX Standard Interface

What is an Operating System?

 It is an extended machine

 Hides the messy details that must be performed

 Presents user with a virtual machine interface,

easier to use

 It is a resource manager

 Each program gets time with the resource

 Each program gets space on the resource

Copyright ©: University of Illinois CS 241 Staff 5

Machine-dependent layer

A Peek into Unix

Copyright ©: University of Illinois CS 241 Staff 6

Application

Portable OS Layer

Libraries User space/level

Kernel space/level

• User/kernel modes are

supported by hardware

•Some systems do not have

clear user-kernel boundary

Machine-dependent layer

Application

Copyright ©: University of Illinois CS 241 Staff 7

Applications

(Firefox, Emacs, grep)

Portable OS Layer

Libraries

• Written by programmer

• Compiled by

programmer

• Uses function calls

Machine-dependent layer

Unix: Libraries

Copyright ©: University of Illinois CS 241 Staff 8

Application

Portable OS Layer

Libraries (e.g., stdio.h)

• Provided pre-compiled

• Defined in headers

• Input to linker (compiler)

• Invoked like functions

• May be “resolved” when

program is loaded

Machine-dependent layer

Typical Unix OS Structure

Copyright ©: University of Illinois CS 241 Staff 9

Application

Portable OS Layer

Libraries

• System calls (read,

open..)

• All “high-level” code

Machine-dependent layer

Typical Unix OS Structure

Copyright ©: University of Illinois CS 241 Staff 10

Application

Portable OS Layer

Libraries • Bootstrap

• System initialization

• Interrupt and exception

• I/O device driver

• Memory management

• Kernel/user mode

switching

• Processor management

History of Computer

Generations

 Pre-computing generation 1792 - 1871

 Babbage’s “Analytical Engine”, first programming language

 First generation 1945 – 1955

 Vacuum tubes, plug boards

 Second generation 1955 - 1965

 Transistors, batch systems, mainframes

 Third generation 1965 – 1980

 ICs and multiprogramming

 Fourth generation 1980 – present

 Personal computers

Copyright ©: University of Illinois CS 241 Staff 11

History of Operating Systems

 Early systems

 bring cards to 1401

 read cards to tape

 put tape on 7094 which does computing

 put tape on 1401 which prints output

Copyright ©: University of Illinois CS 241 Staff 12

History of Operating Systems

 Structure of a typical job

 2nd generation

Copyright ©: University of Illinois CS 241 Staff 13

History of Operating Systems

 Multiprogramming/timesharing system

 Three jobs in memory – 3rd generation

Copyright ©: University of Illinois CS 241 Staff 14

Memory

Management

Process

Management

Computer Hardware Review

 Components of a simple personal computer

Copyright ©: University of Illinois CS 241 Staff 15

Bus

Monitor

Early Pentium system

Copyright ©: University of Illinois CS 241 Staff 16

Computer Hardware Review

 Components of a simple personal computer

Copyright ©: University of Illinois CS 241 Staff 17

CPU

Bus

Monitor

Computer

operation and

data processing

CPU , From CS231

 Fetch instruction from code memory

 Fetch operands from data memory

 Perform operation (and store result)

 (Check interrupt line)

 Go to next instruction

 'Conventional CPU'

(Ignore pipeline, optimization complexities)

Copyright ©: University of Illinois CS 241 Staff 18

Computer Hardware Review

 Components of a simple personal computer

Copyright ©: University of Illinois CS 241 Staff 19

Memory

Bus

Monitor

CPU

Stores data

and

programs

Communication

between CPU,

Memory and I/O

CPU Registers

 Fetch instruction from code memory

 Fetch operands from data memory

 Perform operation (and store result)

 Go to next instruction

 Note: CPU must maintain certain state

 Current instructions to fetch (program counter)

 Location of code memory segment

 Location of data memory segment

Copyright ©: University of Illinois CS 241 Staff 20

CPU Register Examples

 Hold instruction operands

 Point to start of

 Code segment

 Data segment

 Stack segment

 Point to current position of

 Instruction pointer

 Stack pointer

Copyright ©: University of Illinois CS 241 Staff 21

CPU Register Examples

 Hold instruction operands

 Point to start of

 Code segment

 Data segment

 Stack segment

 Point to current position of

 Instruction pointer

 Stack pointer

 Why stack?

Copyright ©: University of Illinois CS 241 Staff 22

Command-line arguments

and environment variables

Uninitialized static data

Initialized static data

Program text

Sample Layout for program

image in main memory

Copyright ©: University of Illinois CS 241 Staff 23

Processes have three
segments: text, data, stack

stack

heap

Allocations from malloc family

Activation record for function calls

(return address, parameters,

saved registers, automatic variables

argc, argv, environmentHigh address

Low address

Memory Hierarchy

 Locality of reference

Copyright ©: University of Illinois CS 241 Staff 24

1 KB

128 MB

4 GB

1TB

10 TB

1. Decreasing

cost per bit

2. Increasing

capacity

3. Increasing

access time

4. Decreasing

frequency

of access

Computer Hardware Review

 Components of a simple personal computer

Copyright ©: University of Illinois CS 241 Staff 25

Bus
Memory

I/O

Devices

Bus

Monitor

CPU
I/O

Devices

I/O

Devices

I/O

Devices

Move data

between

computer and

external

environment

I/O Interrupt Mechanism

 Steps in starting an I/O device and getting interrupt

 How the CPU is interrupted

Copyright ©: University of Illinois CS 241 Staff 26

(a) (b)

Operating System Concepts

 Process

 An executable instance

of a program

 Only one process can

use the CPU at a time

 A process tree

 A created two child

processes, B and C

 B created three child

processes, D, E, and F

Copyright ©: University of Illinois CS 241 Staff 27

A

B C

E FD

Operating System Concepts

 Context Switching

 How would you switch CPU execution from one

process to another?

 Semaphores

 Control access to resources

 Inter-process Communication

 Two processes connected by a data/control pipe

Copyright ©: University of Illinois CS 241 Staff 28

A B
Pipe

Shared Resources, Conflicts,

and Deadlocks

Copyright ©: University of Illinois CS 241 Staff 29

(a) A potential deadlock (b) An actual deadlock

System Times

Item Time Scaled Time in Human

Terms (2 billion times

slower)

Processor cycle 0.5 ns (2 GHz) 1 s

Cache access 1 ns (1 GHz) 2 s

Memory access 15 ns 30 s

Context switch 5,000 ns (5 micros) 167 m

Disk access 7,000,000 ns (7 ms) 162 days

System quanta 100,000,000 (100 ms) 6.3 years

Copyright ©: University of Illinois CS 241 Staff 30

Summary

 Resource Manager

 Hardware independence

 Virtual Machine Interface

 POSIX

 Concurrency & Deadlock

Copyright ©: University of Illinois CS 241 Staff 31

