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Operating Systems 

Orientation



Objectives 

 Explain the main purpose of operating systems and describe 

milestones of OS evolution

 Explain fundamental machine concepts

 Instruction processing

 Memory hierarchy

 Interrupts

 I/O

 Explain fundamental OS concepts

 System calls

 Processes 

 Synchronization 

 Files

 Explain the POSIX standard (UNIX specification)
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OS Structure
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POSIX 

The UNIX Interface Standard
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What is an Operating System?

 It is an extended machine

 Hides the messy details that must be performed

 Presents user with a virtual machine interface, 

easier to use

 It is a resource manager

 Each program gets time with the resource

 Each program gets space on the resource 
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Machine-dependent layer

A Peek into Unix
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Application

Portable OS Layer

Libraries User space/level

Kernel space/level

• User/kernel modes are 

supported by hardware 

•Some systems do not have 

clear user-kernel boundary



Machine-dependent layer

Application
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Applications 

(Firefox, Emacs, grep)

Portable OS Layer

Libraries

• Written by programmer

• Compiled by 

programmer

• Uses function calls



Machine-dependent layer

Unix: Libraries
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Application

Portable OS Layer

Libraries (e.g., stdio.h)

• Provided pre-compiled

• Defined in headers

• Input to linker (compiler)

• Invoked like functions

• May be “resolved” when 

program is loaded



Machine-dependent layer

Typical Unix OS Structure
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Application

Portable OS Layer

Libraries

• System calls (read, 

open..)

• All “high-level” code



Machine-dependent layer

Typical Unix OS Structure
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Application

Portable OS Layer

Libraries • Bootstrap

• System initialization

• Interrupt and exception 

• I/O device driver

• Memory management

• Kernel/user mode 

switching

• Processor management



History of Computer 

Generations

 Pre-computing generation 1792 - 1871

 Babbage’s “Analytical Engine”, first programming language

 First generation 1945 – 1955

 Vacuum tubes, plug boards

 Second generation 1955 - 1965

 Transistors, batch systems, mainframes

 Third generation  1965 – 1980

 ICs and multiprogramming

 Fourth generation 1980 – present

 Personal computers
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History of Operating Systems 

 Early systems

 bring cards to 1401

 read cards to tape

 put tape on 7094 which does computing

 put tape on 1401 which prints output
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History of Operating Systems

 Structure of a typical job

 2nd generation
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History of Operating Systems 

 Multiprogramming/timesharing system 

 Three jobs in memory – 3rd generation
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Memory 

Management

Process 

Management



Computer Hardware Review

 Components of a simple personal computer
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Bus

Monitor



Early Pentium system
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Computer Hardware Review

 Components of a simple personal computer
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CPU

Bus

Monitor

Computer 

operation and 

data processing



CPU , From CS231

 Fetch instruction from code memory

 Fetch operands from data memory

 Perform operation (and store result)

 (Check interrupt line)

 Go to next instruction

 'Conventional CPU' 

(Ignore pipeline, optimization complexities)
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Computer Hardware Review

 Components of a simple personal computer
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CPU Registers

 Fetch instruction from code memory

 Fetch operands from data memory

 Perform operation (and store result)

 Go to next instruction

 Note: CPU must maintain certain state

 Current instructions to fetch (program counter)

 Location of code memory segment

 Location of data memory segment
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CPU Register Examples

 Hold instruction operands

 Point to start of

 Code segment

 Data segment

 Stack segment

 Point to current position of

 Instruction pointer

 Stack pointer
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CPU Register Examples

 Hold instruction operands

 Point to start of

 Code segment

 Data segment

 Stack segment

 Point to current position of

 Instruction pointer

 Stack pointer

 Why stack?
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Command-line arguments 

and environment variables

Uninitialized static data

Initialized static data

Program text

Sample Layout for program 

image in main memory
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Processes have three 
segments: text, data, stack

stack

heap

Allocations from malloc family

Activation record for function calls

(return address, parameters, 

saved registers, automatic variables

argc, argv, environmentHigh address

Low address



Memory Hierarchy

 Locality of reference
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1 KB

128 MB

4 GB

1TB

10 TB

1. Decreasing 

cost per bit

2. Increasing 

capacity

3. Increasing 

access time

4. Decreasing 

frequency 

of access



Computer Hardware Review

 Components of a simple personal computer
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I/O Interrupt Mechanism

 Steps in starting an I/O  device and getting interrupt

 How the CPU is interrupted
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(a) (b)



Operating System Concepts

 Process 

 An executable instance 

of a program

 Only one process can 

use the CPU at a time

 A process tree

 A created two child 

processes, B and C

 B created three child 

processes, D, E, and F
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A

B C

E FD



Operating System Concepts

 Context Switching

 How would you switch CPU execution from one 

process to another?

 Semaphores

 Control access to resources

 Inter-process Communication

 Two processes connected by a data/control pipe
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A B
Pipe



Shared Resources, Conflicts, 

and Deadlocks
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(a) A potential deadlock (b) An actual deadlock



System Times 

Item Time Scaled Time in Human 

Terms (2 billion times 

slower)

Processor cycle 0.5 ns (2 GHz) 1 s

Cache access 1 ns (1 GHz) 2 s

Memory access 15 ns 30 s

Context switch 5,000 ns (5 micros) 167 m

Disk access 7,000,000 ns (7 ms) 162 days

System quanta 100,000,000 (100 ms) 6.3 years
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Summary

 Resource Manager

 Hardware independence

 Virtual Machine Interface

 POSIX

 Concurrency & Deadlock
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