
Copyright ©: University of Illinois CS 241 Staff 1

C Survival Guide

Good news: Writing C code is
easy!

void* myfunction() {
 char *p;
 *p = 0;
 return (void*) &p;
}

Copyright ©: University of Illinois CS 241 Staff 6

Bad news: Writing BAD C
code is easy!

void* myfunction() {
 char *p;
 *p = 0;
 return (void*) &p;
}

Copyright ©: University of Illinois CS 241 Staff 7

file://localhost/Users/pbg/Downloads/Silhouette_Gun.svg
file://localhost/Users/pbg/Downloads/Silhouette_Gun.svg
file://localhost/Users/pbg/Downloads/Silhouette_Gun.svg
file://localhost/Users/pbg/Downloads/Silhouette_Gun.svg

Bad news: Writing BAD C
code is easy!

void* myfunction() {
 char *p;
 *p = 0;
 return (void*) &p;
}

Copyright ©: University of Illinois CS 241 Staff 7

file://localhost/Users/pbg/Downloads/Silhouette_Gun.svg
file://localhost/Users/pbg/Downloads/Silhouette_Gun.svg
file://localhost/Users/pbg/Downloads/Silhouette_Gun.svg
file://localhost/Users/pbg/Downloads/Silhouette_Gun.svg
file://localhost/Users/pbg/Downloads/Silhouette_Gun.svg

Bad news: Writing BAD C
code is easy!

void* myfunction() {
 char *p;
 *p = 0;
 return (void*) &p;
}

Copyright ©: University of Illinois CS 241 Staff 7

file://localhost/Users/pbg/Downloads/Silhouette_Gun.svg
file://localhost/Users/pbg/Downloads/Silhouette_Gun.svg
file://localhost/Users/pbg/Downloads/Silhouette_Gun.svg
file://localhost/Users/pbg/Downloads/Silhouette_Gun.svg
file://localhost/Users/pbg/Downloads/Silhouette_Gun.svg
file://localhost/Users/pbg/Downloads/Silhouette_Gun.svg

How do I write good C
programs?

 Fluency in C syntax
 Stack vs. Heap
 Key skill: read code for bugs

 Do not rely solely on compiler warnings, if
any, and testing

 C is powerful - it's the System
Programmer's choice language

Copyright ©: University of Illinois CS 241 Staff 8

The C Language Spirit

 Made by professional programmers for professional
programmers

 Very flexible, very efficient and portable
 Does not protect the programmers from themselves.
 Rationale: programmers know what they are doing.

 UNIX and most “serious” system software (servers,
compilers, etc) are written in C.

 Can do everything Java and C++ can. But complex
tasks could look ugly in C.

Copyright ©: University of Illinois CS 241 Staff 9

C vs. C++

 Problem
 Object oriented languages provided nice features

to programmers, but were very, very slow
 Solution

 The development of C++
 C enhanced with objects

 Programming Challenge
 All syntax you use in this class is valid for C++
 Not all C++ syntax you’ve used, however, is valid

for C
Copyright ©: University of Illinois CS 241 Staff 10

Key Differences between C
and C++

 Input/Output
 C does not have “iostreams”
 C: printf("hello world\n“);
 C++: cout<<"hello world“<<endl;

 Heap memory allocation
 C: malloc()/free()

 int *x = malloc(8 * sizeof(int));
free(x);

 C++: new/delete
 int *x = new int[8]; delete(x);

Copyright ©: University of Illinois CS 241 Staff 11

Compiler

 gcc
 Preprocessor
 Compiler
 Linker
 See manual “man” for options: man gcc

 "Ansi-C" standards C89 versus C99
 C99: Mix variable declarations and code (for int i=…)
 C++ inline comments //a comment

 make – a compilation utility
 Google 'makefile'

Copyright ©: University of Illinois CS 241 Staff 12

Programming in C

 C = Variables + Instructions

Copyright ©: University of Illinois CS 241 Staff 13

What we’ll show you

You already know a lot of C from C++:
int my_fav_function(int x) {
 return x+1; }
Key concepts for this lecture:

Pointers
Memory allocation
Arrays
Strings

10

What we’ll show you

You already know a lot of C from C++:
int my_fav_function(int x) {
 return x+1; }
Key concepts for this lecture:

Pointers
Memory allocation
Arrays
Strings

10

Theme:
how memory
really works

 Pointers

11

Variables

Copyright ©: University of Illinois CS 241 Staff 16

10,000

10,002

10,008

10,010

10,012

…

Value1

Value2

Value3

Value4

Value5

x

y

z

p

d

Memory
Address

Name

Value

int x;
double y;
float z;
double* p;
int d;

Type of each variable
(also determines size)

The “&” Operator:
Reads “Address of”

Copyright ©: University of Illinois CS 241 Staff 17

10,000

10,002

10,008

10,010

10,012

…

Value1

Value2

Value3

Value4

Value5

x

y

z

p

d

Name

Value

&y

Pointers

Copyright ©: University of Illinois CS 241 Staff 18

10,000

10,002

10,008

10,010

10,012

…

Value1

Value2

Value3

10,002

Value5

x

y

z

p

d

Name

Value

A pointer is a variable
whose value is the
address of another

The “*” Operator
Reads “Variable pointed to by”

Copyright ©: University of Illinois CS 241 Staff 19

10,000

10,002

10,008

10,010

10,012

…

Value1

Value2

Value3

10,002

Value5

x

y

z

p

d

Name

Value

A pointer is a variable
whose value is the
address of another

*p

What is the Output?

main() {
 int *p, q, x;
 x=10;
 p=&x;
 *p=x+1;
 q=x;
 printf (“Q = %d\n“, q);
}

Copyright ©: University of Illinois CS 241 Staff 20

What is the Output?

main() {
 int *p, q, x;
 x=10;
 p=&x;
 *p=x+1;
 q=x;
 printf (“Q = %d\n“, q);
}

Copyright ©: University of Illinois CS 241 Staff 21

#@*%!

#@%$!

@*%^

p

q

x

What is the Output?

main() {
 int *p, q, x;
 x=10;
 p=&x;
 *p=x+1;
 q=x;
 printf (“Q = %d\n“, q);
}

Copyright ©: University of Illinois CS 241 Staff 22

#@*%!

#@%$!

10

p

q

x

What is the Output?

main() {
 int *p, q, x;
 x=10;
 p=&x;
 *p=x+1;
 q=x;
 printf (“Q = %d\n“, q);
}

Copyright ©: University of Illinois CS 241 Staff 23

#@%$!

10

p

q

x

What is the Output?

main() {
 int *p, q, x;
 x=10;
 p=&x;
 *p=x+1;
 q=x;
 printf (“Q = %d\n“, q);
}

Copyright ©: University of Illinois CS 241 Staff 24

#@%$!

11

p

q

x

What is the Output?

main() {
 int *p, q, x;
 x=10;
 p=&x;
 *p=x+1;
 q=x;
 printf (“Q = %d\n“, q);
}

Copyright ©: University of Illinois CS 241 Staff 25

11

11

p

q

x

Cardinal Rule: Must Initialize
Pointers before Using them

int *p;
*p = 10;

Copyright ©: University of Illinois CS 241 Staff 26

GOOD or BAD?

Cardinal Rule: Must Initialize
Pointers before Using them

int *p;
*p = 10;

Copyright ©: University of Illinois CS 241 Staff 27

#@*%!p
??

Pointing somewhere
random

BAD!

Cardinal Rule: Must Initialize
Pointers before Using them

int *p;
*p = 10;

Copyright ©: University of Illinois CS 241 Staff 28

#@*%!p

#@*%!
10

How to Initialize Pointers

 Use existing memory: Set pointer
equal to location of known variable

int *p;
int x;
…
p=&x;

 Allocate new memory -- how?

Copyright ©: University of Illinois CS 241 Staff 29

 Memory allocation

26

Memory allocation

 Two ways to dynamically allocate
memory

 Stack: named variables in functions
 Allocated for you when you call a function
 Deallocated for you when function returns

 Heap: memory on demand
 You are responsible for all allocation and

deallocation

27

Heap memory allocation

 C++: new and delete allocate
memory for a whole object

 C: malloc and free deal with
unstructured blocks of bytes.

void* malloc(size_t size);
void free(void* ptr);

28

Example

Copyright ©: University of Illinois CS 241 Staff 30

int* p;

p = (int*) malloc(sizeof(int));

*p = 5;

free(p);

Example

Copyright ©: University of Illinois CS 241 Staff 30

int* p;

p = (int*) malloc(sizeof(int));

*p = 5;

free(p); How many bytes
do you want?

Example

Copyright ©: University of Illinois CS 241 Staff 30

int* p;

p = (int*) malloc(sizeof(int));

*p = 5;

free(p);

cast to the
right type

How many bytes
do you want?

I’m hungry. More bytes plz.

30

int* p = (int*) malloc(10 * sizeof(int));

 Now I have space for 10 integers, laid
out contiguously in memory. What
would be a good name for that...?

 Arrays

31

Arrays

 Contiguous block of memory to fit one or
more elements of some type

 Two ways to allocate:
 named variable: int x[10];
 dynamically:

int* x = (int*) malloc(10*sizeof(int));

32

Arrays

int p[5];

Copyright ©: University of Illinois CS 241 Staff 32

p[0]
p[1]
p[2]
p[3]
p[4]

Name of array (is a pointer)

p

Shorthand:
*(p+1) is called p[1]
*(p+2) is called p[2]
etc..

Example

int y[4];
y[1]=6;
y[2]=2;

Copyright ©: University of Illinois CS 241 Staff 33

6
2

y[0]
y[1]
y[2]
y[3]

y

Array Name as Pointer
What’s the difference between the examples below

 Example 1:

int z[8];
int *q;
q=z;

 Example 2:

int z[8];
int *q;
q=&z[0];

Copyright ©: University of Illinois CS 241 Staff 34

Array Name as Pointer
What’s the difference between the examples below

 Example 1:

int z[8];
int *q;
q=z;

 Example 2:

int z[8];
int *q;
q=&z[0];

Copyright ©: University of Illinois CS 241 Staff 35

NOTHING!!

x (the array name) is a pointer
to the beginning of the array,
which is &x[0]

Questions

 What’s the difference between
int* q;
int q[5];

 What’s wrong with
int ptr[2];
ptr[1] = 1;
ptr[2] = 2;

Copyright ©: University of Illinois CS 241 Staff 39

Questions

 What is the value of b[2] at the end?

int b[3];
int* q;

b[0]=48; b[1]=113; b[2]=1;

q=b;

*(q+1)=2;

b[2]=*b;

b[2]=b[2]+b[1];

Copyright ©: University of Illinois CS 241 Staff 40

Questions

 What is the value of b[2] at the end?

int b[3];
int* q;

b[0]=48; b[1]=113; b[2]=1;

q=b;

*(q+1)=2;

b[2]=*b;

b[2]=b[2]+b[1];

Copyright ©: University of Illinois CS 241 Staff 40

48 113 1

Questions

 What is the value of b[2] at the end?

int b[3];
int* q;

b[0]=48; b[1]=113; b[2]=1;

q=b;

*(q+1)=2;

b[2]=*b;

b[2]=b[2]+b[1];

Copyright ©: University of Illinois CS 241 Staff 40

48 113 1

48 2 1

Questions

 What is the value of b[2] at the end?

int b[3];
int* q;

b[0]=48; b[1]=113; b[2]=1;

q=b;

*(q+1)=2;

b[2]=*b;

b[2]=b[2]+b[1];

Copyright ©: University of Illinois CS 241 Staff 40

48 113 1

48 2 1

48 2 48

Questions

 What is the value of b[2] at the end?

int b[3];
int* q;

b[0]=48; b[1]=113; b[2]=1;

q=b;

*(q+1)=2;

b[2]=*b;

b[2]=b[2]+b[1];

Copyright ©: University of Illinois CS 241 Staff 40

48 113 1

48 2 1

48 2 50

48 2 48

 Strings

39

Strings
(Null-terminated Arrays of Char)

 Strings are arrays that contain the
string characters followed by a “Null”
character ‘\0’ to indicate end of string.
 Do not forget to leave room for the null

character
 Example

 char s[5];

Copyright ©: University of Illinois CS 241 Staff 41

s[0]
s[1]
s[2]
s[3]
s[4]

s

Conventions

 Strings
 “string”
 “c”

 Characters
 ‘c’
 ‘X’

Copyright ©: University of Illinois CS 241 Staff 42

String Operations

 strcpy
 strlen
 strcat
 strcmp

Copyright ©: University of Illinois CS 241 Staff 43

strcpy, strlen

 strcpy(ptr1,
ptr2);
 ptr1 and ptr2 are

pointers to char
 value =

strlen(ptr);
 value is an integer
 ptr is a pointer to char

int len;
char str[15];
strcpy (str,

"Hello, world!");
len = strlen(str);

Copyright ©: University of Illinois CS 241 Staff 44

strcpy, strlen

 What’s wrong with

char str[5];
strcpy (str, "Hello");

Copyright ©: University of Illinois CS 241 Staff 45

strncpy

 strncpy(ptr1,
ptr2, num);
 ptr1 and ptr2 are

pointers to char
 num is the number of

characters to be copied

int len;
char str1[15],

str2[15];
strcpy (str1,

"Hello, world!");
strncpy (str2,

str1, 5);

Copyright ©: University of Illinois CS 241 Staff 46

strncpy

 strncpy(ptr1,
ptr2, num);
 ptr1 and ptr2 are

pointers to char
 num is the number of

characters to be copied

int len;
char str1[15],

str2[15];
strcpy (str1,

"Hello, world!");
strncpy (str2,

str1, 5);

Copyright ©: University of Illinois CS 241 Staff 47

Caution: strncpy blindly copies the
characters. It does not voluntarily
append the string-terminating null
character.

strcat

 strcat(ptr1, ptr2);
 ptr1 and ptr2 are pointers to char

 Concatenates the two null terminated strings
yielding one string (pointed to by ptr1).

char S[25] = "world!";
char D[25] = "Hello, ";
strcat(D, S);

Copyright ©: University of Illinois CS 241 Staff 48

strcat

 strcat(ptr1, ptr2);
 ptr1 and ptr2 are pointers to char

 Concatenates the two null terminated strings
yielding one string (pointed to by ptr1).
 Find the end of the destination string
 Append the source string to the end of the destination

string
 Add a NULL to new destination string

Copyright ©: University of Illinois CS 241 Staff 49

strcat Example

 What’s wrong with

char S[25] = "world!";
strcat(“Hello, ”, S);

Copyright ©: University of Illinois CS 241 Staff 50

strcat Example

 What’s wrong with

char *s = malloc(11 * sizeof(char));
 /* Allocate enough memory for an
 array of 11 characters, enough
 to store a 10-char long string. */

strcat(s, "Hello");

strcat(s, "World");

Copyright ©: University of Illinois CS 241 Staff 51

strcat

Copyright ©: University of Illinois CS 241 Staff 52

strcat

 strcat(ptr1, ptr2);

Copyright ©: University of Illinois CS 241 Staff 52

strcat

 strcat(ptr1, ptr2);
 ptr1 and ptr2 are pointers to char

Copyright ©: University of Illinois CS 241 Staff 52

strcat

 strcat(ptr1, ptr2);
 ptr1 and ptr2 are pointers to char

Copyright ©: University of Illinois CS 241 Staff 52

strcat

 strcat(ptr1, ptr2);
 ptr1 and ptr2 are pointers to char

 Compare to Java

Copyright ©: University of Illinois CS 241 Staff 52

strcat

 strcat(ptr1, ptr2);
 ptr1 and ptr2 are pointers to char

 Compare to Java
 string s = s + " World!";

Copyright ©: University of Illinois CS 241 Staff 52

strcat

 strcat(ptr1, ptr2);
 ptr1 and ptr2 are pointers to char

 Compare to Java
 string s = s + " World!";

Copyright ©: University of Illinois CS 241 Staff 52

strcat

 strcat(ptr1, ptr2);
 ptr1 and ptr2 are pointers to char

 Compare to Java
 string s = s + " World!";

 What would you get in C?

Copyright ©: University of Illinois CS 241 Staff 52

strcat

 strcat(ptr1, ptr2);
 ptr1 and ptr2 are pointers to char

 Compare to Java
 string s = s + " World!";

 What would you get in C?
 The sum of two memory locations!

Copyright ©: University of Illinois CS 241 Staff 52

strcmp

 diff = strcmp(ptr1, ptr2);
 diff is an integer
 ptr1 and ptr2 are pointers to char

 Returns
 zero if strings are identical
 < 0 if ptr1 is less than ptr2 (earlier in a dictionary)
 > 0 if ptr1 is greater than ptr2 (later in a dictionary)

int diff;

char s1[25] = "pat";
char s2[25] = "pet";

diff = strcmp(s1, s2);
Copyright ©: University of Illinois CS 241 Staff 53

Can we make this work?!

53

int x;

printf("This class is %s.\n",);&x

Can we make this work?!

54

int x;

printf("This class is %s.\n",);

 (char*)&x

Can we make this work?!

54

int x;

printf("This class is %s.\n",);

 (char*)&x

&x

Can we make this work?!

55

int x;

printf("This class is %s.\n",);

((char*)&x)[0] = 'f';

Can we make this work?!

55

int x;

printf("This class is %s.\n",);

((char*)&x)[0] = 'f';

&x

Can we make this work?!

56

int x;

printf("This class is %s.\n",);

((char*)&x)[0] = 'f';

((char*)&x)[1] = 'u';

((char*)&x)[2] = 'n';

Can we make this work?!

56

int x;

printf("This class is %s.\n",);&x

((char*)&x)[0] = 'f';

((char*)&x)[1] = 'u';

((char*)&x)[2] = 'n';

Can we make this work?!

57

int x;

printf("This class is %s.\n",);

((char*)&x)[0] = 'f';

((char*)&x)[1] = 'u';

((char*)&x)[2] = 'n';

((char*)&x)[3] = '\0';

Perfectly
legal and
perfectly
horrible!

Can we make this work?!

57

int x;

printf("This class is %s.\n",);

((char*)&x)[0] = 'f';

((char*)&x)[1] = 'u';

((char*)&x)[2] = 'n';

((char*)&x)[3] = '\0';

&x

Perfectly
legal and
perfectly
horrible!

Can we make this work?!

58

int x;

printf("This class is %s.\n",);

char* s = &x;

strcpy(s, “fun”);
Perfectly
legal and
perfectly
horrible!

Can we make this work?!

58

int x;

printf("This class is %s.\n",);

char* s = &x;

strcpy(s, “fun”);

&x

Perfectly
legal and
perfectly
horrible!

 Other operations

59

Increment & decrement

 x++: yield old value, add one
 ++x: add one, yield new value

 --x and x-- are similar (subtract one)
60

int x = 10;
x++;
int y = x++;

int z = ++x;

Increment & decrement

 x++: yield old value, add one
 ++x: add one, yield new value

 --x and x-- are similar (subtract one)
60

int x = 10;
x++;
int y = x++;

int z = ++x;

11

Increment & decrement

 x++: yield old value, add one
 ++x: add one, yield new value

 --x and x-- are similar (subtract one)
60

int x = 10;
x++;
int y = x++;

int z = ++x;

11

13

Math: Increment and Decrement
Operators on Pointers

 Example 1:

int a[2];
int number1, number2, *p;
a[0]=1; a[1]=10;
p=a;
number1 = *p++;
number2 = *p;

 What will number1 and number2 be at the end?

Copyright ©: University of Illinois CS 241 Staff 56

Math: Increment and Decrement
Operators on Pointers

 Example 1:

int a[2];
int number1, number2, *p;
a[0]=1; a[1]=10;
p=a;
number1 = *p++;
number2 = *p;

 What will number1 and number2 be at the end?

Copyright ©: University of Illinois CS 241 Staff 57

Hint: ++ increments pointer p not
variable *p

Logic: Relational (Condition)
Operators

== equal to
!= not equal to
> greater than
< less than
>= greater than or equal to
<= less than or equal to

Copyright ©: University of Illinois CS 241 Staff 58

Logic Example

if (a == b)
 printf (“Equal.”);

else
 printf (“Not Equal.”);

 Question: what will happen if I replaced the above with:
if (a = b)

 printf (“Equal.”);
else

 printf (“Not Equal.”);

Copyright ©: University of Illinois CS 241 Staff 59

Logic Example

if (a == b)
 printf (“Equal.”);

else
 printf (“Not Equal.”);

 Question: what will happen if I replaced the above with:
if (a = b)

 printf (“Equal.”);
else

 printf (“Not Equal.”);

Copyright ©: University of Illinois CS 241 Staff 59

Perfectly LEGAL C statement!
(syntactically speaking)
It copies the value in b into a.
The statement will be interpreted
as TRUE if b is non-zero.

 Review

65

Review

 int p1;
What does &p1 mean?

Copyright ©: University of Illinois CS 241 Staff 60

Review

 How much is y at the end?

int y, x, *p;

x = 20;
*p = 10;
y = x + *p;

Copyright ©: University of Illinois CS 241 Staff 36

Review

 How much is y at the end?

int y, x, *p;

x = 20;
*p = 10;
y = x + *p;

Copyright ©: University of Illinois CS 241 Staff 37

BAD!!
Dereferencing an uninitialized
pointer will likely segfault or
overwrite something!

Segfault = unauthorized
memory access

Review

 What are the differences between x
and y?
char* f() {
 char *x;
 static char*y;
 return y;
}

Copyright ©: University of Illinois CS 241 Staff 63

Review: Debugging

if(strcmp("a","a"))
printf("same!");

Copyright ©: University of Illinois CS 241 Staff 64

Review: Debugging

int i = 4;
int *iptr;
iptr = &i;
*iptr = 5;//now i=5

Copyright ©: University of Illinois CS 241 Staff 65

Review: Debugging

char *p;
p=(char*)malloc(99);
strcpy("Hello",p);
printf("%s World",p);
free(p);

Copyright ©: University of Illinois CS 241 Staff 66

Review: Debugging

char msg[5];
strcpy (msg,"Hello");

Copyright ©: University of Illinois CS 241 Staff 67

38

Operator Description Associativity
()
[]
.

->
++ --

Parentheses (function call)
Brackets (array subscript)
Member selection via object name
Member selection via pointer
Postfix increment/decrement

left-to-right

++ --
+ -
! ~

(type)
*
&

sizeof

Prefix increment/decrement
Unary plus/minus
Logical negation/bitwise complement
Cast (change type)
Dereference
Address
Determine size in bytes

right-to-left

* / % Multiplication/division/modulus left-to-right
+ - Addition/subtraction left-to-right

<< >> Bitwise shift left, Bitwise shift right left-to-right
< <=
> >=

Relational less than/less than or equal to
Relational greater than/greater than or equal to

left-to-right

== != Relational is equal to/is not equal to left-to-right
& Bitwise AND left-to-right
^ Bitwise exclusive OR left-to-right
| Bitwise inclusive OR left-to-right

&& Logical AND left-to-right
|| Logical OR left-to-right
?: Ternary conditional right-to-left
=

+= -=
*= /=

%= &=
^= |=

<<= >>=

Assignment
Addition/subtraction assignment
Multiplication/division assignment
Modulus/bitwise AND assignment
Bitwise exclusive/inclusive OR assignment
Bitwise shift left/right assignment

right-to-left

, Comma (separate expressions) left-to-right
Copyright ©: University of Illinois CS 241 Staff

