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C  Survival Guide



Good news: Writing C code is 
easy! 

void* myfunction() {
    char *p;
    *p = 0;
    return (void*) &p;
}
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Bad news: Writing BAD C 
code is easy! 

void* myfunction() {
    char *p;
    *p = 0;
    return (void*) &p;
}
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How do I write good C 
programs?

 Fluency in C syntax
 Stack vs. Heap
 Key skill: read code for bugs

 Do not rely solely on compiler warnings, if 
any, and testing

 C is powerful - it's the System 
Programmer's choice language
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The C Language Spirit

 Made by professional programmers for professional 
programmers

 Very flexible, very efficient and portable
 Does not protect the programmers from themselves. 
 Rationale: programmers know what they are doing.

 UNIX and most “serious” system software (servers, 
compilers, etc) are written in C.

 Can do everything Java and C++ can. But complex 
tasks could look ugly in C.
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C vs. C++

 Problem
 Object oriented languages provided nice features 

to programmers, but were very, very slow
 Solution

 The development of C++ 
 C enhanced with objects

 Programming Challenge
 All syntax you use in this class is valid for C++
 Not all C++ syntax you’ve used, however, is valid 

for C
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Key Differences between C 
and C++

 Input/Output
 C does not have “iostreams”
 C: printf("hello world\n“); 
 C++: cout<<"hello world“<<endl;

 Heap memory allocation
 C: malloc()/free()

 int *x = malloc(8 * sizeof(int));   
free(x);

 C++:  new/delete
 int *x = new int[8]; delete(x);
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Compiler

 gcc 
 Preprocessor
 Compiler
 Linker
 See manual “man” for options: man gcc  

 "Ansi-C" standards C89 versus C99
 C99: Mix variable declarations and code (for int i=…)
 C++ inline comments //a comment

 make – a compilation utility
 Google 'makefile'
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Programming in C

 C = Variables + Instructions
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What we’ll show you

You already know a lot of C from C++:
int my_fav_function(int x) {
    return x+1; }
Key concepts for this lecture:

Pointers
Memory allocation
Arrays
Strings
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What we’ll show you

You already know a lot of C from C++:
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Strings
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Theme:
how memory
really works



 Pointers
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Variables

Copyright ©: University of Illinois CS 241 Staff 16

10,000

10,002

10,008

10,010

10,012

…

Value1

Value2

Value3

Value4

Value5

x

y

z

p

d

Memory
Address

Name

Value

int  x;
double y;
float z;
double* p;
int  d;

Type of each variable
(also determines size)



The “&” Operator:
Reads “Address of”
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10,000

10,002

10,008

10,010

10,012

…

Value1

Value2

Value3

Value4

Value5

x

y

z

p

d

Name

Value

&y 



Pointers
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10,000

10,002

10,008

10,010

10,012

…

Value1

Value2

Value3

10,002

Value5

x

y

z

p

d

Name

Value

A pointer is a variable 
whose value is the 
address of another



The “*” Operator
Reads “Variable pointed to by”
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10,000

10,002

10,008

10,010

10,012

…

Value1

Value2

Value3

10,002

Value5

x

y

z

p

d

Name

Value

A pointer is a variable 
whose value is the 
address of another

*p 



What is the Output?

main() {
 int *p, q, x;
 x=10;
 p=&x;
 *p=x+1;
 q=x;
 printf (“Q = %d\n“, q);
}
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What is the Output?

main() {
 int *p, q, x;
 x=10;
 p=&x;
 *p=x+1;
 q=x;
 printf (“Q = %d\n“, q);
}
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#@*%!

#@%$!

@*%^

p

q

x



What is the Output?

main() {
 int *p, q, x;
 x=10;
 p=&x;
 *p=x+1;
 q=x;
 printf (“Q = %d\n“, q);
}
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#@%$!
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p

q
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What is the Output?
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#@%$!

10

p

q

x



What is the Output?

main() {
 int *p, q, x;
 x=10;
 p=&x;
 *p=x+1;
 q=x;
 printf (“Q = %d\n“, q);
}
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#@%$!

11

p

q
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What is the Output?

main() {
 int *p, q, x;
 x=10;
 p=&x;
 *p=x+1;
 q=x;
 printf (“Q = %d\n“, q);
}
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11

11

p

q

x



Cardinal Rule: Must Initialize 
Pointers before Using them

int *p;
*p = 10;
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GOOD or BAD?



Cardinal Rule: Must Initialize 
Pointers before Using them

int *p;
*p = 10;
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#@*%!p
??

Pointing somewhere
random

BAD!



Cardinal Rule: Must Initialize 
Pointers before Using them

int *p;
*p = 10;
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#@*%!p

#@*%!
10



How to Initialize Pointers

 Use existing memory: Set pointer 
equal to location of known variable

int *p;
int x;
…
p=&x;

 Allocate new memory -- how?
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 Memory allocation
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Memory allocation

 Two ways to dynamically allocate 
memory

 Stack: named variables in functions
 Allocated for you when you call a function
 Deallocated for you when function returns

 Heap: memory on demand
 You are responsible for all allocation and 

deallocation
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Heap memory allocation

 C++: new and delete allocate 
memory for a whole object

 C: malloc and free deal with 
unstructured blocks of bytes.

void* malloc(size_t size);
void free(void* ptr);
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Example
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int* p;

p = (int*) malloc(sizeof(int));

*p = 5;

free(p);



Example
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int* p;

p = (int*) malloc(sizeof(int));

*p = 5;

free(p); How many bytes
do you want?



Example

Copyright ©: University of Illinois CS 241 Staff 30

int* p;

p = (int*) malloc(sizeof(int));

*p = 5;

free(p);

cast to the
right type

How many bytes
do you want?



I’m hungry.  More bytes plz.

30

int* p = (int*) malloc(10 * sizeof(int));

 Now I have space for 10 integers, laid 
out contiguously in memory.  What 
would be a good name for that...?



 Arrays
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Arrays

 Contiguous block of memory to fit one or 
more elements of some type

 Two ways to allocate:
 named variable:  int x[10];
 dynamically:                          

int* x = (int*) malloc(10*sizeof(int));
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Arrays

int p[5]; 
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p[0]
p[1]
p[2]
p[3]
p[4]

Name of array (is a pointer)

p

Shorthand:
*(p+1) is called p[1]
*(p+2) is called p[2]
etc..



Example

int y[4];
y[1]=6;
y[2]=2; 
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6
2

y[0]
y[1]
y[2]
y[3]

y



Array Name as Pointer
What’s the difference between the examples below

 Example 1:

int z[8];
int *q;
q=z;

 Example 2:

int z[8];
int *q;
q=&z[0];
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Array Name as Pointer
What’s the difference between the examples below

 Example 1:

int z[8];
int *q;
q=z;

 Example 2:

int z[8];
int *q;
q=&z[0];
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NOTHING!!

x (the array name) is a pointer 
to the beginning of the array, 
which is &x[0]



Questions

 What’s the difference between
int* q;
int q[5];

 What’s wrong with
int ptr[2];
ptr[1] = 1;
ptr[2] = 2;

Copyright ©: University of Illinois CS 241 Staff 39



Questions

 What is the value of b[2] at the end?

int b[3];
int* q;

b[0]=48; b[1]=113; b[2]=1;

q=b;

*(q+1)=2;

b[2]=*b;

b[2]=b[2]+b[1];
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Questions
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Strings 
(Null-terminated Arrays of Char)

 Strings are arrays that contain the 
string characters followed by a “Null” 
character ‘\0’ to indicate end of string.
 Do not forget to leave room for the null 

character
 Example

 char s[5];
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s[0]
s[1]
s[2]
s[3]
s[4]

s



Conventions

 Strings
 “string”
 “c”

 Characters
 ‘c’
 ‘X’
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String Operations

 strcpy
 strlen
 strcat
 strcmp
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strcpy, strlen

 strcpy(ptr1, 
ptr2);
 ptr1 and ptr2 are 

pointers to char 
 value = 

strlen(ptr);
 value is an integer
 ptr is a pointer to char 

int len; 
char str[15]; 
strcpy (str, 

"Hello, world!"); 
len = strlen(str); 
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strcpy, strlen

 What’s wrong with 

char str[5]; 
strcpy (str, "Hello"); 
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strncpy

 strncpy(ptr1, 
ptr2, num);
 ptr1 and ptr2 are 

pointers to char     
 num is the number of 

characters to be copied

int len; 
char str1[15], 

str2[15]; 
strcpy (str1, 

"Hello, world!"); 
strncpy (str2, 

str1, 5); 
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strncpy

 strncpy(ptr1, 
ptr2, num);
 ptr1 and ptr2 are 

pointers to char     
 num is the number of 

characters to be copied

int len; 
char str1[15], 

str2[15]; 
strcpy (str1, 

"Hello, world!"); 
strncpy (str2, 

str1, 5); 
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Caution: strncpy blindly copies the 
characters. It does not voluntarily 
append the string-terminating null 
character. 



strcat

 strcat(ptr1, ptr2);
 ptr1 and ptr2 are pointers to char

 Concatenates the two null terminated strings 
yielding one string (pointed to by ptr1). 

char S[25] = "world!"; 
char D[25] = "Hello, "; 
strcat(D, S); 
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strcat

 strcat(ptr1, ptr2);
 ptr1 and ptr2 are pointers to char

 Concatenates the two null terminated strings 
yielding one string (pointed to by ptr1). 
 Find the end of the destination string
 Append the source string to the end of the destination 

string
 Add a NULL to new destination string
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strcat Example

 What’s wrong with

char S[25] = "world!"; 
strcat(“Hello, ”, S); 
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strcat Example

 What’s wrong with

char *s = malloc(11 * sizeof(char));
     /* Allocate enough memory for an
        array of 11 characters, enough
        to store a 10-char long string. */

strcat(s, "Hello");

strcat(s, "World");
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strcat
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strcat

 strcat(ptr1, ptr2);
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strcat

 strcat(ptr1, ptr2);
 ptr1 and ptr2 are pointers to char
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strcat

 strcat(ptr1, ptr2);
 ptr1 and ptr2 are pointers to char
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strcat

 strcat(ptr1, ptr2);
 ptr1 and ptr2 are pointers to char

 Compare to Java
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strcat

 strcat(ptr1, ptr2);
 ptr1 and ptr2 are pointers to char

 Compare to Java
 string s = s + " World!";
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strcat

 strcat(ptr1, ptr2);
 ptr1 and ptr2 are pointers to char

 Compare to Java
 string s = s + " World!";
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strcat

 strcat(ptr1, ptr2);
 ptr1 and ptr2 are pointers to char

 Compare to Java
 string s = s + " World!";

 What would you get in C?
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strcat

 strcat(ptr1, ptr2);
 ptr1 and ptr2 are pointers to char

 Compare to Java
 string s = s + " World!";

 What would you get in C?
 The sum of two memory locations!
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strcmp

 diff = strcmp(ptr1, ptr2);    
 diff is an integer 
 ptr1 and ptr2 are pointers to char 

 Returns 
 zero if strings are identical 
 < 0 if ptr1 is less than ptr2 (earlier in a dictionary)
 > 0 if ptr1 is greater than ptr2 (later in a dictionary)

int diff;

char s1[25] = "pat"; 
char s2[25] = "pet"; 

diff = strcmp(s1, s2);
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Can we make this work?!
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int x;

printf("This class is %s.\n",     );&x
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Can we make this work?!
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int x;

printf("This class is %s.\n",     );

((char*)&x)[0] = 'f';
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Can we make this work?!
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int x;

printf("This class is %s.\n",     );

((char*)&x)[0] = 'f';

((char*)&x)[1] = 'u';

((char*)&x)[2] = 'n';

((char*)&x)[3] = '\0';

Perfectly 
legal and 
perfectly 
horrible!
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Can we make this work?!
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int x;

printf("This class is %s.\n",     );

char* s = &x;

strcpy(s, “fun”);
Perfectly 
legal and 
perfectly 
horrible!



Can we make this work?!

58

int x;

printf("This class is %s.\n",     );

char* s = &x;

strcpy(s, “fun”);

&x

Perfectly 
legal and 
perfectly 
horrible!
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Increment & decrement

 x++: yield old value, add one
 ++x: add one, yield new value

 --x and x-- are similar (subtract one)
60

int x = 10;
x++;
int y = x++;

int z = ++x;



Increment & decrement

 x++: yield old value, add one
 ++x: add one, yield new value

 --x and x-- are similar (subtract one)
60

int x = 10;
x++;
int y = x++;

int z = ++x;

11



Increment & decrement

 x++: yield old value, add one
 ++x: add one, yield new value

 --x and x-- are similar (subtract one)
60

int x = 10;
x++;
int y = x++;

int z = ++x;

11
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Math: Increment and Decrement 
Operators on Pointers

 Example 1:

int a[2];
int number1, number2, *p;
a[0]=1; a[1]=10; 
p=a;
number1 = *p++;
number2 = *p;

 What will number1 and number2 be at the end?
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Math: Increment and Decrement 
Operators on Pointers

 Example 1:

int a[2];
int number1, number2, *p;
a[0]=1; a[1]=10; 
p=a;
number1 = *p++;
number2 = *p;

 What will number1 and number2 be at the end?
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Hint: ++ increments pointer p not 
variable *p 



Logic: Relational (Condition) 
Operators

==   equal to 
!=   not equal to 
>    greater than 
<    less than 
>=   greater than or equal to 
<=   less than or equal to 

Copyright ©: University of Illinois CS 241 Staff 58



Logic Example

if (a == b) 
 printf (“Equal.”);

else 
 printf (“Not Equal.”); 

 Question: what will happen if I replaced the above with:
if (a = b) 

 printf (“Equal.”);
else 

 printf (“Not Equal.”); 
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Logic Example

if (a == b) 
 printf (“Equal.”);

else 
 printf (“Not Equal.”); 

 Question: what will happen if I replaced the above with:
if (a = b) 

 printf (“Equal.”);
else 

 printf (“Not Equal.”); 
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Perfectly LEGAL C statement! 
(syntactically speaking) 
It copies the value in b into a. 
The statement will be interpreted 
as TRUE if b is non-zero. 



 Review
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Review

 int p1; 
What does &p1 mean?
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Review

 How much is y at the end?

int y, x, *p;

x = 20;
*p = 10; 
y = x + *p;
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Review

 How much is y at the end?

int y, x, *p;

x = 20;
*p = 10; 
y = x + *p;
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BAD!! 
Dereferencing an uninitialized 
pointer will likely segfault or 
overwrite something!

Segfault = unauthorized 
memory access



Review

 What are the differences between x 
and y?
char* f() { 
  char *x;
  static char*y;
  return y;
}
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Review: Debugging

if(strcmp("a","a"))
printf("same!");
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Review: Debugging

int i = 4;
int *iptr;
iptr = &i;
*iptr = 5;//now i=5
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Review: Debugging

char *p;
p=(char*)malloc(99);
strcpy("Hello",p);
printf("%s World",p);
free(p);
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Review: Debugging

char msg[5];
strcpy (msg,"Hello");
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Operator Description Associativity
()
[]
.

->
++  --

Parentheses (function call) 
Brackets (array subscript)
Member selection via object name
Member selection via pointer
Postfix increment/decrement

left-to-right

++  --
+  -
!  ~

(type)
*
&

sizeof  

Prefix increment/decrement
Unary plus/minus
Logical negation/bitwise complement
Cast (change type)
Dereference
Address
Determine size in bytes

right-to-left

*  /  % Multiplication/division/modulus left-to-right
+  - Addition/subtraction left-to-right

<<  >> Bitwise shift left, Bitwise shift right left-to-right
<  <=
>  >=

Relational less than/less than or equal to
Relational greater than/greater than or equal to

left-to-right

==  != Relational is equal to/is not equal to left-to-right
& Bitwise AND left-to-right
^ Bitwise exclusive OR left-to-right
| Bitwise inclusive OR left-to-right

&& Logical AND left-to-right
|| Logical OR left-to-right
?: Ternary conditional right-to-left
=

+=  -=
*=  /=

%=  &=
^=  |=

<<=  >>=

Assignment
Addition/subtraction assignment
Multiplication/division assignment
Modulus/bitwise AND assignment
Bitwise exclusive/inclusive OR assignment
Bitwise shift left/right assignment

right-to-left

, Comma (separate expressions) left-to-right
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