
Copyright ©: University of Illinois CS 241 Staff 1

C Survival Guide

Good news: Writing C code is
easy!

void* myfunction() {
 char *p;
 *p = 0;
 return (void*) &p;
}

Copyright ©: University of Illinois CS 241 Staff 6

Bad news: Writing BAD C
code is easy!

void* myfunction() {
 char *p;
 *p = 0;
 return (void*) &p;
}

Copyright ©: University of Illinois CS 241 Staff 7

file://localhost/Users/pbg/Downloads/Silhouette_Gun.svg
file://localhost/Users/pbg/Downloads/Silhouette_Gun.svg
file://localhost/Users/pbg/Downloads/Silhouette_Gun.svg
file://localhost/Users/pbg/Downloads/Silhouette_Gun.svg

Bad news: Writing BAD C
code is easy!

void* myfunction() {
 char *p;
 *p = 0;
 return (void*) &p;
}

Copyright ©: University of Illinois CS 241 Staff 7

file://localhost/Users/pbg/Downloads/Silhouette_Gun.svg
file://localhost/Users/pbg/Downloads/Silhouette_Gun.svg
file://localhost/Users/pbg/Downloads/Silhouette_Gun.svg
file://localhost/Users/pbg/Downloads/Silhouette_Gun.svg
file://localhost/Users/pbg/Downloads/Silhouette_Gun.svg

Bad news: Writing BAD C
code is easy!

void* myfunction() {
 char *p;
 *p = 0;
 return (void*) &p;
}

Copyright ©: University of Illinois CS 241 Staff 7

file://localhost/Users/pbg/Downloads/Silhouette_Gun.svg
file://localhost/Users/pbg/Downloads/Silhouette_Gun.svg
file://localhost/Users/pbg/Downloads/Silhouette_Gun.svg
file://localhost/Users/pbg/Downloads/Silhouette_Gun.svg
file://localhost/Users/pbg/Downloads/Silhouette_Gun.svg
file://localhost/Users/pbg/Downloads/Silhouette_Gun.svg

How do I write good C
programs?

 Fluency in C syntax
 Stack vs. Heap
 Key skill: read code for bugs

 Do not rely solely on compiler warnings, if
any, and testing

 C is powerful - it's the System
Programmer's choice language

Copyright ©: University of Illinois CS 241 Staff 8

The C Language Spirit

 Made by professional programmers for professional
programmers

 Very flexible, very efficient and portable
 Does not protect the programmers from themselves.
 Rationale: programmers know what they are doing.

 UNIX and most “serious” system software (servers,
compilers, etc) are written in C.

 Can do everything Java and C++ can. But complex
tasks could look ugly in C.

Copyright ©: University of Illinois CS 241 Staff 9

C vs. C++

 Problem
 Object oriented languages provided nice features

to programmers, but were very, very slow
 Solution

 The development of C++
 C enhanced with objects

 Programming Challenge
 All syntax you use in this class is valid for C++
 Not all C++ syntax you’ve used, however, is valid

for C
Copyright ©: University of Illinois CS 241 Staff 10

Key Differences between C
and C++

 Input/Output
 C does not have “iostreams”
 C: printf("hello world\n“);
 C++: cout<<"hello world“<<endl;

 Heap memory allocation
 C: malloc()/free()

 int *x = malloc(8 * sizeof(int));
free(x);

 C++: new/delete
 int *x = new int[8]; delete(x);

Copyright ©: University of Illinois CS 241 Staff 11

Compiler

 gcc
 Preprocessor
 Compiler
 Linker
 See manual “man” for options: man gcc

 "Ansi-C" standards C89 versus C99
 C99: Mix variable declarations and code (for int i=…)
 C++ inline comments //a comment

 make – a compilation utility
 Google 'makefile'

Copyright ©: University of Illinois CS 241 Staff 12

Programming in C

 C = Variables + Instructions

Copyright ©: University of Illinois CS 241 Staff 13

What we’ll show you

You already know a lot of C from C++:
int my_fav_function(int x) {
 return x+1; }
Key concepts for this lecture:

Pointers
Memory allocation
Arrays
Strings

10

What we’ll show you

You already know a lot of C from C++:
int my_fav_function(int x) {
 return x+1; }
Key concepts for this lecture:

Pointers
Memory allocation
Arrays
Strings

10

Theme:
how memory
really works

 Pointers

11

Variables

Copyright ©: University of Illinois CS 241 Staff 16

10,000

10,002

10,008

10,010

10,012

…

Value1

Value2

Value3

Value4

Value5

x

y

z

p

d

Memory
Address

Name

Value

int x;
double y;
float z;
double* p;
int d;

Type of each variable
(also determines size)

The “&” Operator:
Reads “Address of”

Copyright ©: University of Illinois CS 241 Staff 17

10,000

10,002

10,008

10,010

10,012

…

Value1

Value2

Value3

Value4

Value5

x

y

z

p

d

Name

Value

&y

Pointers

Copyright ©: University of Illinois CS 241 Staff 18

10,000

10,002

10,008

10,010

10,012

…

Value1

Value2

Value3

10,002

Value5

x

y

z

p

d

Name

Value

A pointer is a variable
whose value is the
address of another

The “*” Operator
Reads “Variable pointed to by”

Copyright ©: University of Illinois CS 241 Staff 19

10,000

10,002

10,008

10,010

10,012

…

Value1

Value2

Value3

10,002

Value5

x

y

z

p

d

Name

Value

A pointer is a variable
whose value is the
address of another

*p

What is the Output?

main() {
 int *p, q, x;
 x=10;
 p=&x;
 *p=x+1;
 q=x;
 printf (“Q = %d\n“, q);
}

Copyright ©: University of Illinois CS 241 Staff 20

What is the Output?

main() {
 int *p, q, x;
 x=10;
 p=&x;
 *p=x+1;
 q=x;
 printf (“Q = %d\n“, q);
}

Copyright ©: University of Illinois CS 241 Staff 21

#@*%!

#@%$!

@*%^

p

q

x

What is the Output?

main() {
 int *p, q, x;
 x=10;
 p=&x;
 *p=x+1;
 q=x;
 printf (“Q = %d\n“, q);
}

Copyright ©: University of Illinois CS 241 Staff 22

#@*%!

#@%$!

10

p

q

x

What is the Output?

main() {
 int *p, q, x;
 x=10;
 p=&x;
 *p=x+1;
 q=x;
 printf (“Q = %d\n“, q);
}

Copyright ©: University of Illinois CS 241 Staff 23

#@%$!

10

p

q

x

What is the Output?

main() {
 int *p, q, x;
 x=10;
 p=&x;
 *p=x+1;
 q=x;
 printf (“Q = %d\n“, q);
}

Copyright ©: University of Illinois CS 241 Staff 24

#@%$!

11

p

q

x

What is the Output?

main() {
 int *p, q, x;
 x=10;
 p=&x;
 *p=x+1;
 q=x;
 printf (“Q = %d\n“, q);
}

Copyright ©: University of Illinois CS 241 Staff 25

11

11

p

q

x

Cardinal Rule: Must Initialize
Pointers before Using them

int *p;
*p = 10;

Copyright ©: University of Illinois CS 241 Staff 26

GOOD or BAD?

Cardinal Rule: Must Initialize
Pointers before Using them

int *p;
*p = 10;

Copyright ©: University of Illinois CS 241 Staff 27

#@*%!p
??

Pointing somewhere
random

BAD!

Cardinal Rule: Must Initialize
Pointers before Using them

int *p;
*p = 10;

Copyright ©: University of Illinois CS 241 Staff 28

#@*%!p

#@*%!
10

How to Initialize Pointers

 Use existing memory: Set pointer
equal to location of known variable

int *p;
int x;
…
p=&x;

 Allocate new memory -- how?

Copyright ©: University of Illinois CS 241 Staff 29

 Memory allocation

26

Memory allocation

 Two ways to dynamically allocate
memory

 Stack: named variables in functions
 Allocated for you when you call a function
 Deallocated for you when function returns

 Heap: memory on demand
 You are responsible for all allocation and

deallocation

27

Heap memory allocation

 C++: new and delete allocate
memory for a whole object

 C: malloc and free deal with
unstructured blocks of bytes.

void* malloc(size_t size);
void free(void* ptr);

28

Example

Copyright ©: University of Illinois CS 241 Staff 30

int* p;

p = (int*) malloc(sizeof(int));

*p = 5;

free(p);

Example

Copyright ©: University of Illinois CS 241 Staff 30

int* p;

p = (int*) malloc(sizeof(int));

*p = 5;

free(p); How many bytes
do you want?

Example

Copyright ©: University of Illinois CS 241 Staff 30

int* p;

p = (int*) malloc(sizeof(int));

*p = 5;

free(p);

cast to the
right type

How many bytes
do you want?

I’m hungry. More bytes plz.

30

int* p = (int*) malloc(10 * sizeof(int));

 Now I have space for 10 integers, laid
out contiguously in memory. What
would be a good name for that...?

 Arrays

31

Arrays

 Contiguous block of memory to fit one or
more elements of some type

 Two ways to allocate:
 named variable: int x[10];
 dynamically:

int* x = (int*) malloc(10*sizeof(int));

32

Arrays

int p[5];

Copyright ©: University of Illinois CS 241 Staff 32

p[0]
p[1]
p[2]
p[3]
p[4]

Name of array (is a pointer)

p

Shorthand:
*(p+1) is called p[1]
*(p+2) is called p[2]
etc..

Example

int y[4];
y[1]=6;
y[2]=2;

Copyright ©: University of Illinois CS 241 Staff 33

6
2

y[0]
y[1]
y[2]
y[3]

y

Array Name as Pointer
What’s the difference between the examples below

 Example 1:

int z[8];
int *q;
q=z;

 Example 2:

int z[8];
int *q;
q=&z[0];

Copyright ©: University of Illinois CS 241 Staff 34

Array Name as Pointer
What’s the difference between the examples below

 Example 1:

int z[8];
int *q;
q=z;

 Example 2:

int z[8];
int *q;
q=&z[0];

Copyright ©: University of Illinois CS 241 Staff 35

NOTHING!!

x (the array name) is a pointer
to the beginning of the array,
which is &x[0]

Questions

 What’s the difference between
int* q;
int q[5];

 What’s wrong with
int ptr[2];
ptr[1] = 1;
ptr[2] = 2;

Copyright ©: University of Illinois CS 241 Staff 39

Questions

 What is the value of b[2] at the end?

int b[3];
int* q;

b[0]=48; b[1]=113; b[2]=1;

q=b;

*(q+1)=2;

b[2]=*b;

b[2]=b[2]+b[1];

Copyright ©: University of Illinois CS 241 Staff 40

Questions

 What is the value of b[2] at the end?

int b[3];
int* q;

b[0]=48; b[1]=113; b[2]=1;

q=b;

*(q+1)=2;

b[2]=*b;

b[2]=b[2]+b[1];

Copyright ©: University of Illinois CS 241 Staff 40

48 113 1

Questions

 What is the value of b[2] at the end?

int b[3];
int* q;

b[0]=48; b[1]=113; b[2]=1;

q=b;

*(q+1)=2;

b[2]=*b;

b[2]=b[2]+b[1];

Copyright ©: University of Illinois CS 241 Staff 40

48 113 1

48 2 1

Questions

 What is the value of b[2] at the end?

int b[3];
int* q;

b[0]=48; b[1]=113; b[2]=1;

q=b;

*(q+1)=2;

b[2]=*b;

b[2]=b[2]+b[1];

Copyright ©: University of Illinois CS 241 Staff 40

48 113 1

48 2 1

48 2 48

Questions

 What is the value of b[2] at the end?

int b[3];
int* q;

b[0]=48; b[1]=113; b[2]=1;

q=b;

*(q+1)=2;

b[2]=*b;

b[2]=b[2]+b[1];

Copyright ©: University of Illinois CS 241 Staff 40

48 113 1

48 2 1

48 2 50

48 2 48

 Strings

39

Strings
(Null-terminated Arrays of Char)

 Strings are arrays that contain the
string characters followed by a “Null”
character ‘\0’ to indicate end of string.
 Do not forget to leave room for the null

character
 Example

 char s[5];

Copyright ©: University of Illinois CS 241 Staff 41

s[0]
s[1]
s[2]
s[3]
s[4]

s

Conventions

 Strings
 “string”
 “c”

 Characters
 ‘c’
 ‘X’

Copyright ©: University of Illinois CS 241 Staff 42

String Operations

 strcpy
 strlen
 strcat
 strcmp

Copyright ©: University of Illinois CS 241 Staff 43

strcpy, strlen

 strcpy(ptr1,
ptr2);
 ptr1 and ptr2 are

pointers to char
 value =

strlen(ptr);
 value is an integer
 ptr is a pointer to char

int len;
char str[15];
strcpy (str,

"Hello, world!");
len = strlen(str);

Copyright ©: University of Illinois CS 241 Staff 44

strcpy, strlen

 What’s wrong with

char str[5];
strcpy (str, "Hello");

Copyright ©: University of Illinois CS 241 Staff 45

strncpy

 strncpy(ptr1,
ptr2, num);
 ptr1 and ptr2 are

pointers to char
 num is the number of

characters to be copied

int len;
char str1[15],

str2[15];
strcpy (str1,

"Hello, world!");
strncpy (str2,

str1, 5);

Copyright ©: University of Illinois CS 241 Staff 46

strncpy

 strncpy(ptr1,
ptr2, num);
 ptr1 and ptr2 are

pointers to char
 num is the number of

characters to be copied

int len;
char str1[15],

str2[15];
strcpy (str1,

"Hello, world!");
strncpy (str2,

str1, 5);

Copyright ©: University of Illinois CS 241 Staff 47

Caution: strncpy blindly copies the
characters. It does not voluntarily
append the string-terminating null
character.

strcat

 strcat(ptr1, ptr2);
 ptr1 and ptr2 are pointers to char

 Concatenates the two null terminated strings
yielding one string (pointed to by ptr1).

char S[25] = "world!";
char D[25] = "Hello, ";
strcat(D, S);

Copyright ©: University of Illinois CS 241 Staff 48

strcat

 strcat(ptr1, ptr2);
 ptr1 and ptr2 are pointers to char

 Concatenates the two null terminated strings
yielding one string (pointed to by ptr1).
 Find the end of the destination string
 Append the source string to the end of the destination

string
 Add a NULL to new destination string

Copyright ©: University of Illinois CS 241 Staff 49

strcat Example

 What’s wrong with

char S[25] = "world!";
strcat(“Hello, ”, S);

Copyright ©: University of Illinois CS 241 Staff 50

strcat Example

 What’s wrong with

char *s = malloc(11 * sizeof(char));
 /* Allocate enough memory for an
 array of 11 characters, enough
 to store a 10-char long string. */

strcat(s, "Hello");

strcat(s, "World");

Copyright ©: University of Illinois CS 241 Staff 51

strcat

Copyright ©: University of Illinois CS 241 Staff 52

strcat

 strcat(ptr1, ptr2);

Copyright ©: University of Illinois CS 241 Staff 52

strcat

 strcat(ptr1, ptr2);
 ptr1 and ptr2 are pointers to char

Copyright ©: University of Illinois CS 241 Staff 52

strcat

 strcat(ptr1, ptr2);
 ptr1 and ptr2 are pointers to char

Copyright ©: University of Illinois CS 241 Staff 52

strcat

 strcat(ptr1, ptr2);
 ptr1 and ptr2 are pointers to char

 Compare to Java

Copyright ©: University of Illinois CS 241 Staff 52

strcat

 strcat(ptr1, ptr2);
 ptr1 and ptr2 are pointers to char

 Compare to Java
 string s = s + " World!";

Copyright ©: University of Illinois CS 241 Staff 52

strcat

 strcat(ptr1, ptr2);
 ptr1 and ptr2 are pointers to char

 Compare to Java
 string s = s + " World!";

Copyright ©: University of Illinois CS 241 Staff 52

strcat

 strcat(ptr1, ptr2);
 ptr1 and ptr2 are pointers to char

 Compare to Java
 string s = s + " World!";

 What would you get in C?

Copyright ©: University of Illinois CS 241 Staff 52

strcat

 strcat(ptr1, ptr2);
 ptr1 and ptr2 are pointers to char

 Compare to Java
 string s = s + " World!";

 What would you get in C?
 The sum of two memory locations!

Copyright ©: University of Illinois CS 241 Staff 52

strcmp

 diff = strcmp(ptr1, ptr2);
 diff is an integer
 ptr1 and ptr2 are pointers to char

 Returns
 zero if strings are identical
 < 0 if ptr1 is less than ptr2 (earlier in a dictionary)
 > 0 if ptr1 is greater than ptr2 (later in a dictionary)

int diff;

char s1[25] = "pat";
char s2[25] = "pet";

diff = strcmp(s1, s2);
Copyright ©: University of Illinois CS 241 Staff 53

Can we make this work?!

53

int x;

printf("This class is %s.\n",);&x

Can we make this work?!

54

int x;

printf("This class is %s.\n",);

 (char*)&x

Can we make this work?!

54

int x;

printf("This class is %s.\n",);

 (char*)&x

&x

Can we make this work?!

55

int x;

printf("This class is %s.\n",);

((char*)&x)[0] = 'f';

Can we make this work?!

55

int x;

printf("This class is %s.\n",);

((char*)&x)[0] = 'f';

&x

Can we make this work?!

56

int x;

printf("This class is %s.\n",);

((char*)&x)[0] = 'f';

((char*)&x)[1] = 'u';

((char*)&x)[2] = 'n';

Can we make this work?!

56

int x;

printf("This class is %s.\n",);&x

((char*)&x)[0] = 'f';

((char*)&x)[1] = 'u';

((char*)&x)[2] = 'n';

Can we make this work?!

57

int x;

printf("This class is %s.\n",);

((char*)&x)[0] = 'f';

((char*)&x)[1] = 'u';

((char*)&x)[2] = 'n';

((char*)&x)[3] = '\0';

Perfectly
legal and
perfectly
horrible!

Can we make this work?!

57

int x;

printf("This class is %s.\n",);

((char*)&x)[0] = 'f';

((char*)&x)[1] = 'u';

((char*)&x)[2] = 'n';

((char*)&x)[3] = '\0';

&x

Perfectly
legal and
perfectly
horrible!

Can we make this work?!

58

int x;

printf("This class is %s.\n",);

char* s = &x;

strcpy(s, “fun”);
Perfectly
legal and
perfectly
horrible!

Can we make this work?!

58

int x;

printf("This class is %s.\n",);

char* s = &x;

strcpy(s, “fun”);

&x

Perfectly
legal and
perfectly
horrible!

 Other operations

59

Increment & decrement

 x++: yield old value, add one
 ++x: add one, yield new value

 --x and x-- are similar (subtract one)
60

int x = 10;
x++;
int y = x++;

int z = ++x;

Increment & decrement

 x++: yield old value, add one
 ++x: add one, yield new value

 --x and x-- are similar (subtract one)
60

int x = 10;
x++;
int y = x++;

int z = ++x;

11

Increment & decrement

 x++: yield old value, add one
 ++x: add one, yield new value

 --x and x-- are similar (subtract one)
60

int x = 10;
x++;
int y = x++;

int z = ++x;

11

13

Math: Increment and Decrement
Operators on Pointers

 Example 1:

int a[2];
int number1, number2, *p;
a[0]=1; a[1]=10;
p=a;
number1 = *p++;
number2 = *p;

 What will number1 and number2 be at the end?

Copyright ©: University of Illinois CS 241 Staff 56

Math: Increment and Decrement
Operators on Pointers

 Example 1:

int a[2];
int number1, number2, *p;
a[0]=1; a[1]=10;
p=a;
number1 = *p++;
number2 = *p;

 What will number1 and number2 be at the end?

Copyright ©: University of Illinois CS 241 Staff 57

Hint: ++ increments pointer p not
variable *p

Logic: Relational (Condition)
Operators

== equal to
!= not equal to
> greater than
< less than
>= greater than or equal to
<= less than or equal to

Copyright ©: University of Illinois CS 241 Staff 58

Logic Example

if (a == b)
 printf (“Equal.”);

else
 printf (“Not Equal.”);

 Question: what will happen if I replaced the above with:
if (a = b)

 printf (“Equal.”);
else

 printf (“Not Equal.”);

Copyright ©: University of Illinois CS 241 Staff 59

Logic Example

if (a == b)
 printf (“Equal.”);

else
 printf (“Not Equal.”);

 Question: what will happen if I replaced the above with:
if (a = b)

 printf (“Equal.”);
else

 printf (“Not Equal.”);

Copyright ©: University of Illinois CS 241 Staff 59

Perfectly LEGAL C statement!
(syntactically speaking)
It copies the value in b into a.
The statement will be interpreted
as TRUE if b is non-zero.

 Review

65

Review

 int p1;
What does &p1 mean?

Copyright ©: University of Illinois CS 241 Staff 60

Review

 How much is y at the end?

int y, x, *p;

x = 20;
*p = 10;
y = x + *p;

Copyright ©: University of Illinois CS 241 Staff 36

Review

 How much is y at the end?

int y, x, *p;

x = 20;
*p = 10;
y = x + *p;

Copyright ©: University of Illinois CS 241 Staff 37

BAD!!
Dereferencing an uninitialized
pointer will likely segfault or
overwrite something!

Segfault = unauthorized
memory access

Review

 What are the differences between x
and y?
char* f() {
 char *x;
 static char*y;
 return y;
}

Copyright ©: University of Illinois CS 241 Staff 63

Review: Debugging

if(strcmp("a","a"))
printf("same!");

Copyright ©: University of Illinois CS 241 Staff 64

Review: Debugging

int i = 4;
int *iptr;
iptr = &i;
*iptr = 5;//now i=5

Copyright ©: University of Illinois CS 241 Staff 65

Review: Debugging

char *p;
p=(char*)malloc(99);
strcpy("Hello",p);
printf("%s World",p);
free(p);

Copyright ©: University of Illinois CS 241 Staff 66

Review: Debugging

char msg[5];
strcpy (msg,"Hello");

Copyright ©: University of Illinois CS 241 Staff 67

38

Operator Description Associativity
()
[]
.

->
++ --

Parentheses (function call)
Brackets (array subscript)
Member selection via object name
Member selection via pointer
Postfix increment/decrement

left-to-right

++ --
+ -
! ~

(type)
*
&

sizeof

Prefix increment/decrement
Unary plus/minus
Logical negation/bitwise complement
Cast (change type)
Dereference
Address
Determine size in bytes

right-to-left

* / % Multiplication/division/modulus left-to-right
+ - Addition/subtraction left-to-right

<< >> Bitwise shift left, Bitwise shift right left-to-right
< <=
> >=

Relational less than/less than or equal to
Relational greater than/greater than or equal to

left-to-right

== != Relational is equal to/is not equal to left-to-right
& Bitwise AND left-to-right
^ Bitwise exclusive OR left-to-right
| Bitwise inclusive OR left-to-right

&& Logical AND left-to-right
|| Logical OR left-to-right
?: Ternary conditional right-to-left
=

+= -=
*= /=

%= &=
^= |=

<<= >>=

Assignment
Addition/subtraction assignment
Multiplication/division assignment
Modulus/bitwise AND assignment
Bitwise exclusive/inclusive OR assignment
Bitwise shift left/right assignment

right-to-left

, Comma (separate expressions) left-to-right
Copyright ©: University of Illinois CS 241 Staff

