C Survival Guide

Copyright ©: University of Illinois CS 241 Staff

Good news: Writing C code is
[easy!

void* myfunction() {
char *p;
*p = 0;
return (void¥*) &p;

Copyright ©: University of Illinois CS 241 Staff

Bad news: Writing BAD C
[Code IS easy!

void* myfunction() {
char *p;
*p = 0;
return (void¥*) &p;

Copyright ©: University of Illinois CS 241 Staff

file://localhost/Users/pbg/Downloads/Silhouette_Gun.svg
file://localhost/Users/pbg/Downloads/Silhouette_Gun.svg
file://localhost/Users/pbg/Downloads/Silhouette_Gun.svg
file://localhost/Users/pbg/Downloads/Silhouette_Gun.svg

Bad news: Writing BAD C
[Code IS easy!

void* myfunction() {
char *p; & =
*p = 0; i
return (void¥*) &p;

Copyright ©: University of Illinois CS 241 Staff

file://localhost/Users/pbg/Downloads/Silhouette_Gun.svg
file://localhost/Users/pbg/Downloads/Silhouette_Gun.svg
file://localhost/Users/pbg/Downloads/Silhouette_Gun.svg
file://localhost/Users/pbg/Downloads/Silhouette_Gun.svg
file://localhost/Users/pbg/Downloads/Silhouette_Gun.svg

Bad news: Writing BAD C
[Code IS easy!

void* myfunction() {
char *p; <+~
*p = 0; e
return (void¥*) &p; ’

Copyright ©: University of Illinois CS 241 Staff

file://localhost/Users/pbg/Downloads/Silhouette_Gun.svg
file://localhost/Users/pbg/Downloads/Silhouette_Gun.svg
file://localhost/Users/pbg/Downloads/Silhouette_Gun.svg
file://localhost/Users/pbg/Downloads/Silhouette_Gun.svg
file://localhost/Users/pbg/Downloads/Silhouette_Gun.svg
file://localhost/Users/pbg/Downloads/Silhouette_Gun.svg

How do | write good C
[programs’?

Fluency in C syntax
Stack vs. Heap

Key skill: read code for bugs

Do not rely solely on compiler warnings, if
any, and testing

C is powerful - it's the System
Programmer's choice language

Copyright ©: University of Illinois CS 241 Staff

The C Language Spirit

Made by professional programmers for professional
programmers

Very flexible, very efficient and portable

© Does not protect the programmers from themselves.

© Rationale: programmers know what they are doing.

UNIX and most “serious” system software (servers,
compilers, etc) are written in C.

Can do everything Java and C++ can. But complex
tasks could look ugly in C.

Copyright ©: University of Illinois CS 241 Staff

C vs. C++

Problem

© Object oriented languages provided nice features
to programmers, but were very, very slow

Solution
© The development of C++
© C enhanced with objects

Programming Challenge
o All syntax you use in this class is valid for C++
© Not all C++ syntax you've used, however, is valid

for C
Copyright ©: University of Illinois CS 241 Staff 10

Key Differences between C
and C++

Input/Output

© C does not have “iostreams”

O C:.printf("hello world\n"“);

O (C++: cout<<"hello world“<<endl;

Heap memory allocation
0 C:malloc()/free()

int *x = malloc(8 * sizeof(int));
free (x) ;

O (C++: new/delete

int *x = new int[8]; delete(x);

Copyright ©: University of Illinois CS 241 Staff

Compiler

gcc
© Preprocessor

o Compiler

© Linker

o See manual “man” for options: man gcc

"Ansi-C" standards C89 versus C99

o C99: Mix variable declarations and code (forinti=...)
o C++ inline comments //a comment

make — a compilation utility
o Google 'makefile’

Copyright ©: University of Illinois CS 241 Staff

[Programming in C

C = Variables + Instructions

Copyright ©: University of Illinois CS 241 Staff

[What we'll show you

You already know a lot of C from C++:
int my fav function(int x) {
return x+1,; }

Key concepts for this lecture:

Pointers

Memory allocation
Arrays

Strings

10

[What we'll show you

="You already know a lot of C from C++:
int my fav function(int x) {
return x+1; }

mKey concepts for this lecture:

©Pointers
©Memory allocation
OArrays

oStrings

10

Variables

Name
10,000 Type of each variable
* Value1 (also determines size)
10,002
/ Y int X;
Value2 double V&
Memory \ .
Address Value float Z,;
10,008 double* p;
< Value3 int d:
10,010
P Value4
10,012
d Valued

Copyright ©: University of Illinois CS 241 Staff 16

The “&” Operator:
Reads “Address of”

Name

10,000

&
Y \ * [Valuet
10,002
Value?2
\ Value

10,008

= Value3
10,010

P Valued
10,012

d value5

Copyright ©: University of Illinois CS 241 Staff

Pointers

Name _ _ _
A pointer is a variable
10,000 = whose value is the
Vel address of another
10,002
y
Value?2
\ Value
10,008
Z Value3
10,010
P 10,002
10,012

d value5

Copyright ©: University of Illinois CS 241 Staff

Reads “Variable pointed to by”

[The “** Operator

10,000

10,002

10,008
10,010

10,012

Name

A pointer is a variable

x whose value is the

valued address of another
y

Value?2

‘&55‘5“~Vmue

Z Value3

10,002
d Value5

Copyright ©: University of Illinois CS 241 Staff

[What is the Output?

main () {
int *p, q, x;
x=10;
p=&x;
*p=x+1;
q=X,
printf (“Q = %d\n“, q);

Copyright ©: University of Illinois CS 241 Staff

[What is the Output?

main () {
int *p, q, x;P #@*%!

x=10; 9 $@%s!

p=&x;

X @~k%A
*p=x+1;
q=x;

printf (“Q = %d\n“, q);

Copyright ©: University of Illinois CS 241 Staff

[What is the Output?

main () {
int *p, q, x;P #@*%!

x=10; 9 $@%s!

p=&x;

*p=x+1;
q=x;
printf (“Q = %d\n“, q);

Copyright ©: University of Illinois CS 241 Staff

[What is the Output?

main () {
int *p, q, x;P

x=10; 9 $@%s!

p=&x;

*p=x+1;
q=x;
printf (“Q = %d\n“, q);

Copyright ©: University of Illinois CS 241 Staff

[What is the Output?

main () {
int *p, q, x;P

x=10; 9 $@%s!

p=&x;

*p=x+1;
q=x;
printf (“Q = %d\n“, q);

Copyright ©: University of Illinois CS 241 Staff

[What is the Output?

main () {
int *p, q, x;P

p=&x;

*p=x+1;
q=x;
printf (“Q = %d\n“, q);

Copyright ©: University of Illinois CS 241 Staff

Cardinal Rule: Must Initialize
[Pointers before Using them

int *p;
R «— GOOD or BAD?
p = 10;

Copyright ©: University of Illinois CS 241 Staff

Cardinal Rule: Must Initialize
[Pointers before Using them

P *3 !

Pointing somewhere
random

Copyright ©: University of Illinois CS 241 Staff 27

Cardinal Rule: Must Initialize
[Pointers before Using them

int *p;
*p = 10;

P #a*s!
#e _j\» .

#@*3!

Copyright ©: University of Illinois CS 241 Staff

[How to Initialize Pointers

Use existing memory: Set pointer
equal to location of known variable
int *p;

int x;

p=&x;

Allocate new memory -- how?

Copyright ©: University of Illinois CS 241 Staff

[Memory allocation

Two ways to dynamically allocate

memory

Stack: named variables in functions
Allocated for you when you call a function
Deallocated for you when function returns

Heap: memory on demand

You are responsible for all allocation and
deallocation

27

[Heap memory allocation

C++: new and delete allocate
memory for a whole object

C: malloc and free deal with
unstructured blocks of bytes.

void* malloc(size t size);
void free (void* ptr);

28

Example

int* p;

P = (int*) malloc(sizeof (int));

Copyright ©: University of Illinois CS 241 Staff

Example

int* p;

p = (int*) malloc(sizeof(int)) ;

P = 5; \

free (p) ; How many bytes

do you want?

Copyright ©: University of Illinois CS 241 Staff

[Example

int* p;

p = (int*) malloc(sizeof(int)) ;

P = 5; \

free (p) ; How many bytes

do you want?

cast to the
right type

Copyright ©: University of Illinois CS 241 Staff

[I’m hungry. More bytes plz.

int* p = (int*) malloc (10 * sizeof(int));

Now | have space for 10 integers, laid
out contiguously in memory. What
would be a good name for that...?

30

[Arrays

Contiguous block of memory to fit one or
more elements of some type
Two ways to allocate:

named variable: int x[10];

dynamically:
int* x = (int*) malloc(10*sizeof (int)) ;

32

Arrays

int p[5];
f :
p[0]
Name of array (is a pointer) / ii;
p[3]
Shorthand: P

*(pt+l) is called p[1l]
*(p+2) is called p[2]
etc..

Copyright ©: University of Illinois CS 241 Staff

[Example

int y[4];

y[1]=6; .

y[2]1=2; E—
yl[1] 6
y[2] 2
y[3]

Copyright ©: University of Illinois CS 241 Staff

Array Name as Pointer

What'’s the difference between the examples below

Example 1: Example 2:
int z[8]; int z[8];

q=z; q=&z[0];

Copyright ©: University of Illinois CS 241 Staff

[Array Name as Pointer

What'’s the difference between the examples below

Example 1: Example 2:
int z[8]; int z[8];

a=z: NOTHING! oogz(0];

x (the array name) is a pointer

to the beginning of the array,
which is &x[0]

Copyright ©: University of Illinois CS 241 Staff

[Questions

What's the difference between
int* q;
int q[S5];

What's wrong with
int ptr[2];
ptr[l] = 1;
ptr[2] = 2;

Copyright ©: University of Illinois CS 241 Staff

[Questions

What is the value of b[2] at the end?

int b[3];
int* q;

b[0]=48; b[1]=113; b[2]=1;
q=Db;

*(q+l)=2;

b[2]=*b;

b[2]=b[2]+b[1];

Copyright ©: University of Illinois CS 241 Staff

[Questions

What is the value of b[2] at the end?

int b[3];
int* q;

b[0]=48; b[1l]=113; b[2]=1; 48 | 113 | 1

q=Db;

*(q+l)=2;
b[2]=*b;
b[2]=b[2]+b[1];

Copyright ©: University of Illinois CS 241 Staff

Questions

What is the value of b[2] at the end?

int b[3];
int* q;

b[0]=48; b[1l]=113; b[2]=1; 48 | 113 | 1

q=Db;
*(gqt+l)=2; 48 | 2 | 1

b[2]=*Db;
b[2]=b[2]+b[1];

Copyright ©: University of Illinois CS 241 Staff

Questions

What is the value of b[2] at the end?

int b[3];
int* q;

b[0]=48; b[1l]=113; b[2]=1; 48 | 113 | 1

q=b;
*(gqt+l)=2; 48 | 2 | 1
b[2]=*b; 48 | 2 | 48

b[2]=b[2]+b[1];

Copyright ©: University of Illinois CS 241 Staff

Questions

What is the value of b[2] at the end?

int b[3];
int* q;

b[0]=48; b[1l]=113; b[2]=1; 48 | 113 | 1

q=b;

*(q+l)=2; 48 | 2 | 1
b[2]=*b; 48 | 2 | 48
b[2]=b[2]+b[1]; 48 | 2 | 50

Copyright ©: University of Illinois CS 241 Staff

Strings
[(Null-terminated Arrays of Char)

Strings are arrays that contain the
string characters followed by a "Null”
character ‘\o’ to indicate end of string.

Do not forget to leave room for the null

character
Example - ~
char s[5]; s[1]
s[2]
s[3]
s[4]

Copyright ©: University of Illinois CS 241 Staff

Conventions

Strings
“string”
\\CII

Characters
\cl
\x’

Copyright ©: University of Illinois CS 241 Staff

[String Operations

strcpy
strlen
strcat
strcmp

Copyright ©: University of Illinois CS 241 Staff

strcpy, strlen

strcpy (ptrl, int len;
ptr2) ; char str[15];
O ptrlandptr2 are strcpy (str,
pointers to char "Hello, world!");
value = =

len = strlen(str) ;
strlen (ptr);

o0 wvalue is an integer
O ptris a pointer to char

Copyright ©: University of Illinois CS 241 Staff

[strcpy, strlen

What's wrong with

char str[5];
strcpy (str, "Hello");

Copyright ©: University of Illinois CS 241 Staff

strncpy

strncpy (ptrl, int len;
ptr2, num); char strl[15],
o ptrlandptr2 are str2[15];

pointers to char strcpy (strl,

O num is the number of "Hello, world!");

charactersto b ied
'S 10 e CopIe strncpy (str2,

strl, 5);

Copyright ©: University of Illinois CS 241 Staff

strncpy

strncpy (ptrl, int len;
ptr2, num); char strl[15],
ptrl and ptr2 are str2[15];

pointers to char strcpy (strl,

num IS the number of "Hello, world!"):;

h terstob ied
characters to be copie strncpy (str2,

strl, 5);

Caution: strncpy blindly copies the
characters. It does not voluntarily
append the string-terminating null
character.

Copyright ©: University of Illinois CS 241 Staff

strcat

strcat (ptrl, ptr2);
o ptrl and ptr2 are pointers to char

Concatenates the two null terminated strings
yielding one string (pointed to by ptrl).

char S[25] = "world!";
char D[25] = "Hello, ";
strcat (D, S);

Copyright ©: University of Illinois CS 241 Staff

strcat

strcat (ptrl, ptr2);
o ptrl and ptr2 are pointers to char

Concatenates the two null terminated strings
yielding one string (pointed to by ptrl).

© Find the end of the destination string

© Append the source string to the end of the destination
string

© Add a NULL to new destination string

Copyright ©: University of Illinois CS 241 Staff

[strcat Example

What's wrong with

char S[25] = "world!";
strcat (“Hello, ”, S);

Copyright ©: University of Illinois CS 241 Staff

strcat Example

What's wrong with

char *s = malloc(ll * sizeof (char));
/* Allocate enough memory for an
array of 11 characters, enough
to store a 10-char long string. */

strcat(s, "Hello");
strcat (s, "World");

Copyright ©: University of Illinois CS 241 Staff

strcat

Copyright ©: University of Illinois CS 241 Staff

strcat

strcat (ptrl, ptr2);

Copyright ©: University of Illinois CS 241 Staff

strcat

strcat (ptrl, ptr2);
ptrl and ptr2 are pointers to char

Copyright ©: University of Illinois CS 241 Staff

strcat

strcat (ptrl, ptr2);
ptrl and ptr2 are pointers to char

Copyright ©: University of Illinois CS 241 Staff

strcat

strcat (ptrl, ptr2);
ptrl and ptr2 are pointers to char

Compare to Java

Copyright ©: University of Illinois CS 241 Staff

strcat

strcat (ptrl, ptr2);
o ptrl and ptr2 are pointers to char

Compare to Java

O string s = s + " World!";

Copyright ©: University of Illinois CS 241 Staff

strcat

strcat (ptrl, ptr2);
o ptrl and ptr2 are pointers to char

Compare to Java

O string s = s + " World!";

Copyright ©: University of Illinois CS 241 Staff

strcat

strcat (ptrl, ptr2);
o ptrl and ptr2 are pointers to char

Compare to Java
O string s = s + " World!";

What would you get in C?

Copyright ©: University of Illinois CS 241 Staff

strcat

strcat (ptrl, ptr2);
o ptrl and ptr2 are pointers to char

Compare to Java
O string s = s + " World!";

What would you get in C?

© The sum of two memory locations!

Copyright ©: University of Illinois CS 241 Staff

strcmp

diff = strcmp (ptrl, ptr2);
o diff is an integer

0 ptrl and ptr2 are pointers to char
Returns

© zero if strings are identical
0 <O0ifptrlisless than ptr2 (earlier in a dictionary)

o >0if ptrl is greater than ptr2 (later in a dictionary)

int diff;
char sl1l[25] = "pat";
char s2[25] = "pet";

diff = strcmp(sl, s2);

Copyright ©: University of Illinois CS 241 Staff

[Can we make this work?!

int x;

printf ("This class is %s.\n", &x);

53

[Can we make this work?!

int x;

(char*) &x

printf ("This class is %s.\n",) ;

54

[Can we make this work?!

int x;

(char*) &x

printf ("This class is %s.\n", &x);

54

[Can we make this work?!

int x;

((char*)é&x) [0] = '"£';

printf ("This class is %s.\n",) ;

55

[Can we make this work?!

int x;

((char*)é&x) [0] = '"£';

printf ("This class is %s.\n", &x);

55

[Can we make this work?!

int x;

((char*) &x) [0] = '£';
((char¥*) &x) [1] = "u';
((char*) &x) [2] = 'n';

printf ("This class is %s.\n",) ;

56

[Can we make this work?!

int x;

((char*) &x) [0] = '£';
((char¥*) &x) [1] = "u';
((char*) &x) [2] = 'n';

printf ("This class is %s.\n", &x);

56

[Can we make this work?!]

int x;

((char*) &x) [0] = "£';
((char*) &x) [1] = 'u';
((char*) &x) [2] = 'n';
((char*)é&x) [3] = '\0';

printf ("This class is %s.\n",) ;

57

[Can we make this work?!]

int x;

((char*) &x) [0] = "£';
((char*) &x) [1] = 'u';
((char*) &x) [2] = 'n';
((char*)é&x) [3] = '\0';

printf ("This class is %s.\n", &x);

57

[Can we make this work?!]

int x;
char* s = &x;

strcpy (s, “fun”);

printf ("This class is %s.\n",) ;

58

[Can we make this work?!]

int x;
char* s = &x;

strcpy (s, “fun”);

printf ("This class is %s.\n", &x);

58

[Increment & decrement

x++: yield old value, add one
++x: add one, yield new value

int x = 10;
X++;
int y = x++;

int z = ++x;

--x and x-- are similar (subtract one) .

[Increment & decrement

x++: yield old value, add one
++x: add one, yield new value

int x = 10;
X++;

int y xX++; 11

int z = ++x;

--x and x-- are similar (subtract one) .

[Increment & decrement

x++: yield old value, add one
++x: add one, yield new value

int x = 10;

X++;

int y = x++; 11
int z = ++x; 13

--x and x-- are similar (subtract one) .

Math: Increment and Decrement
Operators on Pointers

Example 1:

int a[2];
int numberl, number2, *p;
a[0]=1; a[l1l]=10;

p=a,
numberl = *p++;
number2 = *p;

What will numberl and number2 be at the end?

Copyright ©: University of Illinois CS 241 Staff 56

Math: Increment and Decrement
Operators on Pointers

Example 1:

int a[2];
int numberl, number2, *p;
a[0]=1; a[l1l]=10;

p=a,
numberl = *p++; <€ Hint: ++increments pointer p not
number2 = *p; variable “p

What will numberl and number2 be at the end?

Copyright ©: University of Illinois CS 241 Staff 57

Logic: Relational (Condition)
[Operators

== equal to

= not equal to

> greater than

< less than

>= greater than or equal to

<= less than or equal to

Copyright ©: University of Illinois CS 241 Staff

Logic Example

if (a == b)

printf (“Equal.”);
else

printf (“Not Equal.”) ;

Question: what will happen if | replaced the above with:
if (a = b)

printf (“Equal.”);
else

printf (“Not Equal.”) ;

Copyright ©: University of Illinois CS 241 Staff

Logic Example

if (a == b)

printf (“Equal.”);
else

printf (“Not Equal.”) ;

Question: what will happen if | replaced the above with:

if (a = b) Perfectly LEGAL C statement!
printf (“Equal.”); (syntactically speaking)
It copies the value in b into a.

_ “ . The statement will be interpreted
printf ("Not Equal.”); a5 TRUE if b is non-zero.

else

Copyright ©: University of Illinois CS 241 Staff 59

[Review

int pl;
What does &pl mean?

Copyright ©: University of Illinois CS 241 Staff

[Review

How much is y at the end?

int y, x, *p;

Copyright ©: University of Illinois CS 241 Staff

Review

How much is y at the end?

int y, x, *p;

BAD!!
x = 20; /Dereferencing an uninitialized
*p = 10; pointer will likely segfault or
’ overwrite something!
Yy = x + *p;
Segfault = unauthorized
memory access

Copyright ©: University of Illinois CS 241 Staff 37

[Review

What are the differences between x

and y?
char* £ () {
char *x;

static char*y;
return y;

}

Copyright ©: University of Illinois CS 241 Staff

[Review: Debugging

if (strcmp("a","a"))
printf ("same!") ;

Copyright ©: University of Illinois CS 241 Staff

[Review: Debugging

int 1 = 4;
int *iptr;
iptr = &1;
*iptr = 5;//now i=5

Copyright ©: University of Illinois CS 241 Staff

[Review: Debugging

char *p;
p=(char*)malloc(99) ;
strcpy ("Hello",p) ;
printf ("%$s World",p);
free(p) ;

Copyright ©: University of Illinois CS 241 Staff

[Review: Debugging

char msg[5];
strcpy (msg,"Hello");

Copyright ©: University of Illinois CS 241 Staff

Operator Description Associativity
() Parentheses (function call) left-to-right
1 Brackets (array subscript)
. Member selection via object name
-> Member selection via pointer
++ - Postfix increment/decrement
++ - Prefix increment/decrement right-to-left
+ - Unary plus/minus
I ~ Logical negation/bitwise complement
(type) Cast (change type)
* Dereference
& Address
sizeof Determine size in bytes
| % Multiplication/division/modulus left-to-right
+ - Addition/subtraction left-to-right
<< >> Bitwise shift left, Bitwise shift right left-to-right
< <= Relational less than/less than or equal to left-to-right
> >= Relational greater than/greater than or equal to
== I= Relational is equal to/is not equal to left-to-right
& Bitwise AND left-to-right
A Bitwise exclusive OR left-to-right
| Bitwise inclusive OR left-to-right
&& Logical AND left-to-right
| Logical OR left-to-right
?: Ternary conditional right-to-left
= Assignment right-to-left
+= -= Addition/subtraction assignment
= /= Multiplication/division assignment
%= &= Modulus/bitwise AND assignment
A= |= Bitwise exclusive/inclusive OR assignment
<<= >>= Bitwise shift left/right assignment
, Comma (separate expressions) left-to-right
Copyright ©: University of Illinois CS 241 Staff 38

