
1

CS 241 Section Week #5
(2/25/10)

Topics This Section

MP3 Review
Synchronization
Problems
Deadlocks
MP4 Forward

MP3

MP3 Review

3 scheduling functions:
new_job()
job_finished()
quantum_expired()

Job queue
Distinguish the running job and all other jobs in the queue
How to maintain the queue?

Priority queue based implementation: the head is the next job to be
run
Normal queue: traverse the queue to find the right job to be run next

2

MP3 Review

Statistic functions
turnaround_time = finishing_time – arrival_time
wait_time = turnaround_time – running_time
response_time = first_run_time – arrival_time

It is tricky to keep track of the first_run_time
Several events may happen at the same time unit t: new_job(),
job_finish(), etc
new_job() returns job m
job_finish() returns job n
job n is the next job to be run by the CPU
Assuming both m and n are never run by CPU before, only job
n’s first_run_time should be updated to time t

MP3 Review

C header files
A header file (.h file) is a file containing C declarations (functions
or variables) and macro definitions to be shared between several
source files
Two variants:

#include <file>
#include “file”

You may use include guards to avoid illegal multiple definitions of
the same variable or the same function

#ifndef SOME_GUARD
#define SOME_GUARD
int global_variable;
#endif

Semaphores

Example (machex1.c)

int N = 1000000;
int x = 0;

int main(int argc, char** argv)
{

pthread_t threadCountUp, threadCountDown;

pthread_create(&threadCountUp, NULL,countUp,NULL);
pthread_create(&threadCountDown,NULL, countDown,
NULL);
pthread_join(threadCountUp, NULL);
pthread_join(threadCountDown, NULL);
printf("%d\n", x);

}

3

Example
void* countUp()
{

int i;

for (i = 0; i < N; i++)
{
int c = x;
c++;
x = c;

}
}

void* countDown()
{

int i;

for (i = 0; i < N; i++)
{

int c = x;
c--;
x = c;

}
}

Semaphores
Thread1 did ‘x++’ N times.
Thread2 did ‘x--’ N times.
Ideal result: ‘x’ is at its initial value.
Please try to compile machex1.c and run it with
different N values: N= 1000, N = 1000000, etc…
Actual result?

Semaphores
To fix this:

A thread must read, update, and write ‘x’ back to memory
without any other threads interacting with ‘x’.

This concept is an atomic operation.

Semaphores
Conceptually, we would want an ‘atomic’ scope:

void* countUp() {
atomic {

int c = x;
c++;
x = c;

} // But this doesn’t exist…
}

4

Semaphores
Semaphores provide a locking mechanism to give us
atomicity.

void* countUp() {
sem_wait(&sema);
int c = x;
c++;
x = c;
sem_post(&sema);

}

Semaphores
Semaphores provide a locking mechanism to give us
atomicity.

void* countUp() {
sem_wait(&sema); LOCKS
int c = x;
c++;
x = c;
sem_post(&sema); UNLOCKS

}

Semaphores
To use a semaphore, you have to define it. Three
steps to defining a semaphore:

1. Include the header file:
#include <semaphore.h>

Semaphores
To use a semaphore, you have to define it. Three
steps to defining a semaphore:

2. Declare the semaphore:
sem_t sema;

(Declare this in a global scope.)

5

Semaphores
To use a semaphore, you have to define it. Three
steps to defining a semaphore:

3. Initialize the semaphore:
sem_init(&sema, 0, 1);

Semaphores
sem_init(&sema, 0, 1);

&sema: Your declared sem_t.
0 : 0 := Thread Sync
1 : Total of one thread

inside a ‘locked’
section of code.

Semaphores
Three steps to starting them:

Include: #include <semaphore.h>
Define: sem_t sema;
Init: sem_init(&sema, 0, 1);

Semaphores
Two functions to use them:

Acquiring the lock:
sem_wait(&sema);

Releasing the lock:
sem_post(&sema);

6

Semaphores
Example Revisited:

sem_wait()
read x
x++

context sw sema_wait()
write x thread blocked
sem_post()

unlocked /*…*/

Mutexes
Mutexes are binary semaphores
Simple and efficient
Use of a mutex

pthread_mutex_init(): unlike semaphores, no initial value
is needed
pthread_mutex_lock()
pthread_mutex_trylock()
pthread_mutex_unlock()
pthread_mutex_destroy()

We focus on mutexes in MP4

Problems

Problem 1 - Use semaphores to ensure order

machex2.c creates two threads to print out “Hello World”.
Use semaphores to ensure that “World\nHello“ is never printed
instead of “Hello World”.

void *hello_thread() {
sleep(2);
fprintf(stderr, "Hello ");

}

void *world_thread() {
sleep(1);
fprintf(stderr, "World!\n");

}

int main() {
pthread_t hello, world;

pthread_create(&hello, NULL, hello_thread, NULL);
pthread_create(&world, NULL, world_thread, NULL);

pthread_join(hello, NULL);
pthread_join(world, NULL);

return 0;
}

7

Problem 1 - Use semaphores to ensure order

void *hello_thread() {
sleep(2);
fprintf(stderr, "Hello ");
sem_post(&sem);

}

void *world_thread() {
sleep(1);
sem_wait(&sem);
fprintf(stderr, "World!\n");
sem_post(&sem);

}

sem_t sem;

int main(){
pthread_t hello, world;

sem_init(&sem, 0, 0);

pthread_create(&hello, NULL, hello_thread,
NULL);

pthread_create(&world, NULL, world_thread,
NULL);

pthread_join(hello, NULL);
pthread_join(world, NULL);

return 0;
}

Problem 2 – Two semaphores
machex3.c creates two threads.

Both want access to two semaphores.
If you run this program, the program appears to stop running
after a bit. Why?

sem_t sem1, sem2;
int main() {

pthread_t t1, t2;

sem_init(&sem1, 0, 1);
sem_init(&sem2, 0, 1);

pthread_create(&t1, NULL, p1, NULL);
pthread_create(&t2, NULL, p2, NULL);
pthread_join(t1, NULL);
pthread_join(t2, NULL);

return 0;
}

Problem 2 – Two semaphores
void *p1() {

while (1) {
printf("p1: sem_wait(&sem1);\n");
sem_wait(&sem1);
printf("p1: sem_wait(&sem2);\n");
sem_wait(&sem2);
printf("p1: locked\n");
printf("p1: sem_post(&sem2);\n");
sem_post(&sem2);
printf("p1: sem_post(&sem1);\n");
sem_post(&sem1);
printf("p1: unlocked\n");

}
return NULL;

}

void *p2(){
while (1) {

printf("p2: sem_wait(&sem2);\n");
sem_wait(&sem2);
printf("p2: sem_wait(&sem1);\n");
sem_wait(&sem1);
printf("p2: locked\n");
printf("p2:sem_post(&sem1);\n");
sem_post(&sem1);
printf("p2: sem_post(&sem2);\n");
sem_post(&sem2);
printf("p2: unlocked\n");
}
return NULL;

}

Problem 2 – Two semaphores

sem1_wait()

sem2_wait()

sem1_wait()

sem2_wait()

DEADLOCK!

8

Requirements for Deadlock
Mutual exclusion

Processes claim exclusive control of the resources they
require

Hold-and-wait (a.k.a. wait-for) condition
Processes hold resources already allocated to them while
waiting for additional resources

No preemption condition
Resources cannot be removed from the processes holding
them until used to completion

Circular wait condition: deadlock has occurred
A circular chain of processes exists in which each process
holds one or more resources that are requested by the next
process in the chain

Dealing with Deadlocks
Prevention

Break one of the four deadlock conditions

Avoidance
Impose less stringent conditions than for prevention,
allowing the possibility of deadlock, but sidestepping it as it
approaches.

Detection
determine if deadlock has occurred, and which processes
and resources are involved.

MP4

MP4 Overview
This is your first long MP. You have two weeks to complete it.
You need to implement two parts:

The “deadlock resilient mutex” library: libdrm
The library for cycle detection and cycle-related functions: libwfg

A compiled libwfg library is provided for you to implement the
first part of the MP
libwfg is not thread-safe.Therefore, you will need to have a
lock to control access to calls to libwfg to ensure two
processes do not make a call at the same time to libwfg.
After completing the first part, you should write your own libwfg
libary

9

Part 1: Deadlock Resilient Mutex
Deadlock prevention

Enforce a global ordering on all locks
Locks should be acquired in descending order

Deadlock avoidance
No cycle exist in a wait-for graph

Deadlock detection
Periodically incur the cycle detection algorithm

Part 2: The library for cycle detection and
cycle-related functions

You are to implement the wait-for graph (a resource
allocation graph in fact)

wfg_init()
wfg_add_wait_edge(): a thread request a resource
wfg_add_hold_edge(): a resource is acquired by a
thread
wfg_remove_edge()

You are to implement the cycle detection algorithm
The given test cases are far from complete. You
should derive your own test cases.

