
CS 241 Section Week #4
(02/18/10)

Topics This Section

MP #2
MP #3
5-state Model
Review of Scheduling
Problems

MP #2

MP #2
qsort()

Define your own comparison function
int compare (const void *e1, const void *e2)
{

return (-1) *
strcasecmp(*(const char**)e1, *(const char**)e2);

}

Sorts string in reverse order.

MP #2
Merge

Consider two sorted lists (integers for example):
{ 2, 8, 11, 17, 32 }
{ 4, 12, 17, 34, 57}

It’s possible to merge them together (and remove
duplicates) in one algorithm.

Start a pointer at beginning of both lists
Compare the current element of the lists

If one element is less than the other, print out the desired output and
advance the pointer on that list.
If the elements are equal, print out either element and advance the
pointer of both lists.

O(n), rather than O(n lg(n)) of qsort()

MP #2
pthreads

Running threads in parallel was required:
INCORRECT:
for (i = 1; i < argc; i++)
{

pthread_create(…);
pthread_join(…)

}

CORRECT:
for (i = 1; i < argc; i++)

pthread_create(…);

for (i = 1; i < argc; i++)
pthread_join(…)

MP #3

MP3 Forward

In MP3, you will add code to a simulator for a CPU
scheduler.

We provide you with the code for the simulator.
You don’t need to understand this code to understand this MP.
You should consider the simulator a ‘black box’

You need to implement these algorithms:
fcfs, sjf, psjf, pri, ppri, rr#

MP3 Forward

You need to fill in 3 scheduling functions:
scheduler_new_job()
scheduler_job_finished()
scheduler_quantum_expired()

Note that these are the only times that the scheduler
needs to make a decision!

A clean_up() function to clean up any memory your
program may’ve allocated
A show_queue() function to help you debug your
program
You need to create your own job queue

MP3 Forward

You also need to fill in 3 statistics functions:
float scheduler_average_response_time()
float scheduler_average_waiting_time()
float scheduler_average_turnaround_time()

These are called at the end of the simulation.

MP3 Forward
How the functions are called…

The simulator runs on discrete time units. Every time unit
will always execute in the following way:

(1): Is there a new job arriving at the current time?
If so, call _new_job()

(2): Run the job currently scheduled
(3): Did the current job finish scheduling?

If so, call _job_finished()
(4): If the job did not finish, are we in Round Robin and has the
quantum expired?

If so, call _quantum_expired()

MP3 Forward
You can find sample input/output file in the
examples/ directory.

Input File: proc1.csv
Example Output:

proc1-fcfs.out
proc1-sjf.out
…

Total of two sample outputs, covers many test
cases, possibly not all (try out some of your own test
cases!).

MP3 Forward

For success on this MP:
Carefully read README.txt for details!
Look at the example runs and compare your results (e.g.
using ‘diff’)!

This MP is harder than all previous MPs!!
Requires a good understanding of data structures,
scheduling, and pointers all in one MP!

Good luck!

Five State Model

15

5-State Model - Transitions

Review of Scheduling

Scheduling

The CPU Scheduler decides which thread should be
in the running state. It is called when:

A thread is created or finishes
A clock interrupt occurs
An I/O interrupt occurs
A thread yields

Scheduling

The algorithms that we usually talk about are:
First-Come First-Serve (FCFS)
Shortest Job First (SJF)
Priority
Round Robin (RR)

FCFS Example

0 6

P4P1

14

P3

21

P2

24

037P3
2

1
4

Priority
06P1

Arrival TimeDurationProcess

03P4

08P2

SJF Example

037P3
2

1
4

Priority
06P1

Arrival TimeDurationProcess

03P4

08P2

0 3

P4 P1

9

P3

16

P2

24

Priority Example

037P3
2

1
4

Priority
06P1

Arrival TimeDurationProcess

03P4

08P2

0 8

P4 P1

11

P3

18

P2
24

RR(1) Example

037P3
2

1
4

Priority
06P1

Arrival TimeDurationProcess

03P4

08P2

0 12

P1 P2 P3 P4

19 24

Quanta = 1 time unit

Scheduling

Scheduling algorithms can be preemptive or non-
preemptive

Non-preemptive: each thread chooses when to yield to
the processor (e.g. when done or system call)
Preemptive: scheduler forces the thread to yield (e.g.
time quantum expires in RR)

Scheduling

Metrics for a single job
Response Time = time from job submission until it’s
running for the first time
Waiting Time = total time that the job is not running but
queued
Turnaround Time = time between the job’s entry and
completion

Problems

Problem #1

15J3
14J2
26J1

Priority #DurationJob

These three jobs are going to arrive at
our scheduler 1 time unit apart from
each other (i.e. one job at time 0, one
at time 1, and one at time 2), but the
order hasn’t been decided yet.

Problem #1

We want to guarantee that the
jobs finish in the order

J1 then J2 then J3

Problem #1
Which arrival order(s) guarantee

this if the scheduler uses:
1) FCFS?
2) non-premptive SJF?
3) preemptive SJF? (use remaining time, and ties are

broken by arrival time)
4) RR-1? (arriving jobs are placed on ready queue

immediately)
5) non-preemptive priority?
6) preemptive priority?

Problem #1 Solution
Job Time Priority
1 6 2
2 4 1
3 5 1

1. FCFS: 1 2 3

2. n-p-SJF: 1 2 3 (1 needs to arrive first, then 2 will
1 3 2 beat 3)

3. p-SJF: 1 3 2 (1 needs to arrive first, and tie breaks
will give it control; then 2 beats 3)

4. RR-1: 1 3 2 (1 needs to run the longest, then 3, then 2,
and it barely works out)

5. n-p-Prio: 1 2 3 (1 must come first because of low prio,
and then 2 and 3 must follow in order)

6. p-Prio: none (2 or 3 will always preempt 1)

Problem #2
For the SJF and RR examples,
calculate:

1) Average response time
2) Average waiting time
3) Average turnaround time

Are either of these clearly better?
When would you use each?

SJF Example

037P3
2

1
4

Priority
06P1

Arrival TimeDurationProcess

03P4

08P2

0 3

P4 P1

9

P3

16

P2

24

P4 waiting time: 0
P1 waiting time: 3
P3 waiting time: 9
P2 waiting time: 16

Average response time (ART):
(0+3+9+16)/4 = 7

Average waiting time (AWT):
(0+3+9+16)/4 = 7
Average turnaround time (ATT):
(3+9+16+24)/4 = 13

P4 turnaround time: 3
P1 turnaround time: 9
P3 turnaround time: 16
P2 turnaround time: 24

0 3

P4 P1

9

P3

16

P2

24

Metrics for Non-preemptive:Shortest Job First

RR(1) Example

037P3
2

1
4

Priority
06P1

Arrival TimeDurationProcess

03P4

08P2

0 12

P1 P2 P3 P4

19 24

Quanta = 1 time unit

Metrics for Round Robin Example

P1 waiting time: 13
P2 waiting time: 16
P3 waiting time: 16
P4 waiting time: 9

Average response time (ART):
(0 + 1 + 2 + 3) / 4 = 1.5

Average waiting time (AWT):
(13+16+16+9)/4 = 13.5

Average turnaround time (ATT):
(19+24+23+12)/4 = 19.5

0 12

P1 P2 P3 P4

19 24

P1 turnaround time: 19
P2 turnaround time: 24
P3 turnaround time: 23
P4 turnaround time: 12

