
MP1 and MP2 - Threads

CS241 Discussion Section

Week 3

February 11, 2010

Outline

 MP1 Issues

 MP2 Overview

 File I/O

 POSIX threads - pthreads

MP1 Issues

• Q: My printf prints my string correctly

but appends a lot of garbage after it. Why?

MP1 Issues

• Q: My printf prints my string correctly

but appends a lot of garbage after it. Why?

• A: The line probably does not have a
termination char ('\0')

MP1 Issues

• Q: Why there's no '\0' at the end of my

string?

MP1 Issues

• A: Some functions (e.g., strncpy(),

strncat()), do not add the \0 at the end of the

string

• S: add the termination char manually:

strncpy(str,src,i);

str[i]='\0';

• Q: Why there's no '\0' at the end of my

string?

MP1 Issues

What’s wrong with this code?

#include <string.h>

#include <stdio.h>

#include <stdlib.h>

int main(){

char *str = (char *) malloc(5);

strcpy(str,"Hello");

printf("%s",str);

}

MP1 Issues

What’s wrong with this code?

#include <string.h>

#include <stdio.h>

#include <stdlib.h>

int main(){

char *str = (char *) malloc(5);

strcpy(str,"Hello");

printf("%s",str);

}

No space for \0

==15648== Invalid write of size 1

==15648== at 0x4027167: memcpy (in /usr/lib/valgrind/vgpreload_memcheck-x86-linux.so)

==15648== by 0x804847A: main (a.c:8)

==15648== Address 0x419802d is 0 bytes after a block of size 5 alloc'd

Valgrind helps finding these errors:

MP1 Issues

What’s wrong with this code?
#include <string.h>

#include <stdio.h>

#include <stdlib.h>

int main(){

int i;

char str[6];

scanf("%s",str);

if (!strcmp(str,"A")) i=1;

if (!strcmp(str,"B")) i=2;

printf("%d",i);

}

MP1 Issues

What’s wrong with this code?
#include <string.h>

#include <stdio.h>

#include <stdlib.h>

int main(){

int i;

char str[6];

scanf("%s",str);

if (!strcmp(str,"A")) i=1;

if (!strcmp(str,"B")) i=2;

printf("%d",i);

}

i might not be initialized

==15721== Conditional jump or move depends on uninitialised value(s)

Valgrind helps finding these errors:

MP1 Issues

What’s wrong with this code?
#include <string.h>

#include <stdio.h>

#include <stdlib.h>

void init(dictionary_t* d){

d = malloc(sizeof(dictionary_t));

d->next = NULL;

}

int main(){

dictionary_t dic;

init(&dic)

}

MP1 Issues

What’s wrong with this code?
#include <string.h>

#include <stdio.h>

#include <stdlib.h>

void init(dictionary_t* d){

d = malloc(sizeof(dictionary_t));

d->next = NULL;

}

int main(){

dictionary_t dic;

init(&dic)

}

STACK

HEAP

dic

MP1 Issues

What’s wrong with this code?
#include <string.h>

#include <stdio.h>

#include <stdlib.h>

void init(dictionary_t* d){

d = malloc(sizeof(dictionary_t));

d->next = NULL;

}

int main(){

dictionary_t dic;

init(&dic)

}

STACK

HEAP

dic

MP1 Issues

What’s wrong with this code?
#include <string.h>

#include <stdio.h>

#include <stdlib.h>

void init(dict_t* d){

d = malloc(sizeof(dictionary_t));

d->next = NULL;

}

int main(){

dict_t dic;

init(&dic)

}

STACK

HEAP

dic

(dict_t*) d

MP1 Issues

What’s wrong with this code?
#include <string.h>

#include <stdio.h>

#include <stdlib.h>

void init(dictionary_t* d){

d = malloc(sizeof(dictionary_t));

d->next = NULL;

}

int main(){

dictionary_t dic;

init(&dic)

}

STACK

HEAP

dic

(dict_t*) d

dict_t:

next=????

MP1 Issues

What’s wrong with this code?
#include <string.h>

#include <stdio.h>

#include <stdlib.h>

void init(dictionary_t* d){

d = malloc(sizeof(dictionary_t));

d->next = NULL;

}

int main(){

dictionary_t dic;

init(&dic)

}

STACK

HEAP

dic

(dict_t*) d

dict_t:

next = NULL

MP1 Issues

What’s wrong with this code?
#include <string.h>

#include <stdio.h>

#include <stdlib.h>

void init(dictionary_t* d){

d = malloc(sizeof(dictionary_t));

d->next = NULL;

}

int main(){

dictionary_t dic;

init(&dic)

}

STACK

HEAP

dic

dict_t:

next = NULL

Still uninitialized

Lost memory

MP1 Issues

Solution:
#include <string.h>

#include <stdio.h>

#include <stdlib.h>

void init(dictionary_t* d){

d = malloc(sizeof(dictionary_t));

d->next = NULL;

}

int main(){

dictionary_t dic;

init(&dic)

}

STACK

HEAP

dic

(dict_t*) d

MP2 Overview

MP2 is an introduction to threads

Goal: sort an enormous data set in parallel

using threads

MP2 Overview

Part 1: [Multi-threaded sorting]

Each input file is sorted by a different thread, and the output is saved to a
file with the same name plus “.sorted”.

Ignore empty lines.

Reverse lexicographical (alphabetical) order.

Use qsort:

void qsort(void *base, size_t nmemb, size_t size,

int(*compar)(const void *, const void *));

Pointer to a function

MP2 Overview

Part 2: [Multi-threaded merging]

Each pair of files is merged until only one is left.

A new round is started when all files in the previous one are merged.

Ignore duplicates and emptylines.

file2.txt file3.txt file4.txtfile1.txt file5.txt

tmp1 tmp2

tmp3

sorted.txt

Round 1

Round 2

Round 3

Round 4

file5.txt

file5.txt

File I/O

I/O in C
MP2 requires you to read and write text files in C.

Two primary means of doing I/O in C:

Through lightly-wrapped system calls

open(), close(), read(), write(), etc

Through C-language standards

fopen(), fclose(), fread(), fwrite(), etc

I/O in C
Opening a file (Method #1):

fopen(const char *filename, const char *mode);

filename: path to file to open

mode: what do you wish to do with the file?
r: read only

r+: read and write (file must already exist)

w: write (or overwrite) a file

w+: write (or overwrite) a file and allow for reading

a: append to the end of the file (works for new files, too)

a+: appends to end of file and allows for reading anywhere in the
file; however, writing will always occur as an append

I/O in C
Opening a file (Method #2):
open(const char *filename, int flags, int mode);

filename: path to file to open

flags: what do you wish to do with the file?

One of the following is required:
O_RDONLY, O_WRONLY, O_RDWR

And any number of these flags (yo “add” these flags, simply

binary-OR them together):
O_APPEND: Similar to “a+” in fopen()

O_CREAT: Allows creation of a file if it doesn’t exist

O_SYNC: Allows for synchronous I/O (thread-safeness)

mode: what permissions should the new file have?

(S_IRUSR | S_IWUSR) creates a user read-write file.

Opening Files in C
Return value of opening a file:

Having called open() or fopen(), they will both create

an entry in the OS’s file descriptor table.

Specifics of a file descriptor table will be covered in-depth in the

second-half of CS 241.

Both open() and fopen() returns information about its

file descriptor:

open(): Returns an int.

fopen(): Returns a (FILE *).

Reading Files in C
Two ways to read files in C:
fread(void *ptr, size_t size, size_t count, FILE *s);

*ptr: Where should the data be read into?

size: What is the size of each piece of data?

count: How many pieces?

*s: What (FILE *) do we read from?

read(int fd, void *buf, size_t count);

fd: What file do we read from?

*buf: Where should the data be read into?

count: How many bytes should be read?

Reading Files in C
Reading more advancely…
fscanf(FILE *stream, const char *format, …);

Allows for reading at a semantic-level (eg: ints, doubles, etc) rather than a

byte-level.The format string (*format) is of the same format as printf().

fgets(char *s, int size, FILE *stream);

reads in at most size -1 characters from stream and stores them into the

buffer pointed to by s. Reading stops after an EOF or a newline. If a newline

is read, it is stored into the buffer. A '\0’ is stored after the last character in

the buffer.

Writing Files in C
Writing is a lot like reading…

fwrite(void *ptr, size_t size, size_t count, FILE *s);

Writing of bytes with (FILE *).

write(int fd, void *buf, size_t count);

Writing of bytes with a file descriptor (int)

fprintf(FILE *stream, const char *format, …);

Formatted writing to files (works like printf())

Closing Files in C

Always close your files!

fclose(FILE *stream);

close(int fd);

write(), and especially fwrite()/fprintf(), may be
buffered before being written out to disk.

If a file is never closed after writing:

• the new data may never be written on the actual file;

• the files may be corrupted.

Function Pointers

Passing Functions in C
In this MP, you must use qsort():

void qsort (void *base, size_t num, size_t size,

int (*comparator)(const void *, const void *));

Passing Functions in C
In this MP, you must use qsort():

void qsort (void *base, size_t num, size_t size,

int (*comparator)(const void *, const void *));

Requires a function of the following format:

int ___(const void *a, const void *b);

That function should return:
(negative) if (first param) < (second param)

0 if (first param) == (second param)
(positive) if (first param) > (second param)

a and b are pointers to the elements being sorted.

Threads

Copyright ©:

Nahrstedt, Angrave,

Abdelzaher 35

Threads vs. Processes

Each thread execute separately

Threads in the same process share resources

No protection among threads!!

POSIX Threads (Pthreads)

Standardized, portable thread API

To use POSIX thread functions

#include <pthread.h>

gcc –o main main.c -lpthread

Copyright ©:

Nahrstedt, Angrave,

Abdelzaher 37

Creating a thread with pthread

A thread is created with

int pthread_create(

pthread_t *thread,

const pthread_attr_t *attr,

void *(*start_routine)(void *),

void *arg);

The creating process (or thread) must provide a location for storage of the thread id.

The third parameter is just the name of the function for the thread to run.

The last parameter is a pointer to the arguments.

Problem 1

Hello World! (thread edition)

We’ll create two threads and one will print out

“Hello”, and the other “World”.

Problem 1

#include <stdio.h>

#include <stdlib.h>

#include <pthread.h>

void *hello_thread(void *arg)

{

fprintf(stderr, "Hello ");

return NULL;

}

void *world_thread(void *arg)

{

fprintf(stderr, "World!\n");

return NULL;

}

Problem 1

#include <stdio.h>

#include <stdlib.h>

#include <pthread.h>

void *hello_thread(void *arg)

{

fprintf(stderr, "Hello ");

return NULL;

}

int main(int argc, char **argv)

{

pthread_t hello, world;

pthread_create(&hello, NULL, hello_thread, NULL);

pthread_create(&world, NULL, world_thread, NULL);

return 0;

}

void *world_thread(void *arg)

{

fprintf(stderr, "World!\n");

return NULL;

}

Problem 1

#include <stdio.h>

#include <stdlib.h>

#include <pthread.h>

void *hello_thread(void *arg)

{

fprintf(stderr, "Hello ");

return NULL;

}

int main(int argc, char **argv)

{

pthread_t hello, world;

pthread_create(&hello, NULL, hello_thread, NULL);

pthread_create(&world, NULL, world_thread, NULL);

return 0;

}

void *world_thread(void *arg)

{

fprintf(stderr, "World!\n");

return NULL;

}

What happens here?

Waiting for completion

All running threads are killed when:

• main()returns;

• any thread calls exit().

pthread_exit(void* retval):

• If called from any thread exits that thread but does not affect the

other running threads

• If thread is joinable returns the pointer to retvalue to the thread that

joined the exiting one

• If called in main() waits for the completion of all threads before

terminating the process.

Joining Threads

int pthread_join(pthread_t thread, void **value_ptr);

The joined thread joined must be joinable. Default setting, but don’t count

on it. Set the attributes instead:

pthread_attr_t attr;

pthread_attr_init(&attr);

pthread_attr_setdetachstate(&attr,PTHREAD_CREATE_JOINABLE);

Pointer to memory where

the return value is stored

Detaching Threads

We have another option:

int pthread_detach (pthread_t thread);

Lets the system reclaim the thread’s resources after it

terminates

Good practice:

• call pthread_detach or pthread_join for each thread

• Explicitly set the attributes for each thread

Problem 1

#include <stdio.h>

#include <stdlib.h>

#include <pthread.h>

void *hello_thread(void *arg)

{

fprintf(stderr, "Hello ");

return NULL;

}

int main(int argc, char **argv)

{

pthread_t hello, world;

pthread_create(&hello, NULL, hello_thread, NULL);

pthread_create(&world, NULL, world_thread, NULL);

pthread_join(hello, NULL);

pthread_join(world, NULL);

return 0;

}

void *world_thread(void *arg)

{

fprintf(stderr, "World!\n");

return NULL;

}

Problem 1

#include <stdio.h>

#include <stdlib.h>

#include <pthread.h>

void *hello_thread(void *arg)

{

fprintf(stderr, "Hello ");

return NULL;

}

int main(int argc, char **argv)

{

pthread_t hello, world;

pthread_create(&hello, NULL, hello_thread, NULL);

pthread_create(&world, NULL, world_thread, NULL);

pthread_join(hello, NULL);

pthread_join(world, NULL);

return 0;

}

void *world_thread(void *arg)

{

fprintf(stderr, "World!\n");

return NULL;

}

Hello world!

Or
world!Hello

?

Passing Arguments to Threads

int pthread_create(

pthread_t *thread,

const pthread_attr_t *attr,

void *(*start_routine)(void *),

void *arg);

Pointer to any data type

Have to cast it to a specific pointer type before dereferencing

Aside: Review of structs in C

Keyword struct used to define complex data types:

typedef struct _stats_t {

char *longest, *shortest;

unsigned int numlines;

} stats_t;

Structs can contain variables, arrays, pointers, other structs…

Can structs contain pointers to functions?

Does that remind you of anything?

Can threads have more than one argument?

Yes! Sort of. We can pass a pointer to a struct, e.g.:

typedef struct {

int arg1;

char *arg2;

} myargs;

void main(){

myargs a;

pthread_create(…, myfunc, &a);

}

Can threads have more than one argument?

Yes! Sort of. We can pass a pointer to a struct, e.g.:

typedef struct {

int arg1;

char *arg2;

} myargs;

void main(){

myargs a;

pthread_create(…, myfunc, &a);

}

void *myfunc(void *arg){

myargs *args= (myargs *)arg;

…

}

Thread Return Values

Threads return a void*, too. Return value can be

retrieved by pthread_join()

Be careful about not returning pointers to local

variables!

Concurrency

Threads execute concurrently

• True concurrency on multiple processors

• Interleaving on a uniprocessor machine

All memory, except the stack, is shared between the

threads in a process

What happens if multiple threads access a shared

variable concurrently?

Modifying a shared variable

• Write a program with global variable x = 0

• One thread increments it N times (x++)

• One thread decrements it N times (x--)

• main() joins the threads and prints out x

Modifying a shared variable
#include <pthread.h>

#include <stdio.h>

int x=0, N=10000000;

void* inc(void *args){

int i;

for (i=0;i<N;i++) x++;

}

void* dec(void *args){

int i;

for (i=0;i<N;i++) x--;

}

int main(){

pthread_t t1,t2;

int j;

pthread_create(&t1,NULL,inc,NULL);

pthread_create(&t2,NULL,dec,NULL);

pthread_join(&t1,NULL);

pthread_join(&t2,NULL);

printf("x = %d\n",x);

}
X == 0?

Increase x N times

Decrease x N times

What is going on?

Thread 1

x++;

Thread2

x--;

read x

Decrement

write x

read x

Increment

write x

What is really going on

Thread 1

read x (100)

Increment (101)

Context switch!

write x (101)

Thread2

read x (100)

Decrement (99)

write x (99)

Context switch!

x + 1 - 1 = x + 1 !!!

A few useful Pthreads functions

POSIX function Description

pthread_create create a thread

pthread_detach set thread to release resources

pthread_equal test two thread IDs for equality

pthread_exit exit a thread without exiting process

pthread_join wait for a thread

pthread_self find out own thread ID

