
CS 241 Section Week #12

(04/22/10)

Outline

• Virtual Memory

– Why Virtual Memory

– Virtual Memory Addressing

– TLB (Translation Lookaside Buffer)

– Multilevel Page Table– Multilevel Page Table

• Problems

Virtual Memory

Why Virtual Memory?

• Use main memory as a Cache for the Disk

– Address space of a process can exceed physical memory size

– Sum of address spaces of multiple processes can exceed physical
memory

Why Virtual Memory?

• Use main memory as a Cache for the Disk

– Address space of a process can exceed physical memory size

– Sum of address spaces of multiple processes can exceed physical
memory

• Simplify Memory Management

– Multiple processes resident in main memory.– Multiple processes resident in main memory.

• Each process with its own address space

– Only “active” code and data is actually in memory

Why Virtual Memory?

• Use main memory as a Cache for the Disk

– Address space of a process can exceed physical memory size

– Sum of address spaces of multiple processes can exceed physical
memory

• Simplify Memory Management

– Multiple processes resident in main memory.– Multiple processes resident in main memory.

• Each process with its own address space

– Only “active” code and data is actually in memory

• Provide Protection

– One process can’t interfere with another.

• because they operate in different address spaces.

– User process cannot access privileged information

• different sections of address spaces have different permissions.

Principle of Locality

• Program and data references within a process

tend to cluster

Principle of Locality

• Program and data references within a process

tend to cluster

• Only a few pieces of a process will be needed

over a short period of time (active data or over a short period of time (active data or

code)

Principle of Locality

• Program and data references within a process

tend to cluster

• Only a few pieces of a process will be needed

over a short period of time (active data or over a short period of time (active data or

code)

• Possible to make intelligent guesses about

which pieces will be needed in the future

Principle of Locality

• Program and data references within a process

tend to cluster

• Only a few pieces of a process will be needed

over a short period of time (active data or over a short period of time (active data or

code)

• Possible to make intelligent guesses about

which pieces will be needed in the future

• This suggests that virtual memory may work

efficiently

VM Address Translation
• Parameters

– P = 2p = page size (bytes).

– N = 2n = Virtual address limit

– M = 2m = Physical address limit

virtual page number page offset virtual address
n–1 0p–1p

physical page number page offset physical address
0p–1

address translation

pm–1

Page offset bits don’t change as a result of transl ation

Page Table

• Keeps track of what pages

are in memory

Page Table

• Keeps track of what pages

are in memory

• Provides a mapping from

virtual address to physical virtual address to physical

address

Handling a Page Fault

• Page fault

– Look for an empty page in RAM

• May need to write a page to disk and free it

Handling a Page Fault

• Page fault

– Look for an empty page in RAM

• May need to write a page to disk and free it

– Load the faulted page into that empty page– Load the faulted page into that empty page

Handling a Page Fault

• Page fault

– Look for an empty page in RAM

• May need to write a page to disk and free it

– Load the faulted page into that empty page– Load the faulted page into that empty page

– Modify the page table

Addressing

• 64MB RAM (2^26)

Addressing

• 64MB RAM (2^26)

• 2^32 (4GB) total memory

Virtual Address (32 bits)

Addressing

• 64MB RAM (2^26)

• 2^32 (4GB) total virtual memory

• 4KB page size (2^12)

Virtual Address (32 bits)

Addressing

• 64MB RAM (2^26)

• 2^32 (4GB) total memory

• 4KB page size (2^12)

• So we need 2^12 for the offset, we can use • So we need 2^12 for the offset, we can use

the remainder bits for the page

Virtual Page number (20 bits) Page offset (12 bits)

Virtual Address (32 bits)

Addressing

• 64MB RAM (2^26)

• 2^32 (4GB) total memory

• 4KB page size (2^12)

• So we need 2^12 for the offset, we can use • So we need 2^12 for the offset, we can use

the remainder bits for the page

– 20 bits, we have 2^20 pages (1M pages)

Virtual Page number (20 bits) Page offset (12 bits)

Virtual Address (32 bits)

Address Conversion

• That 20bit page address can be optimized in a variety of

ways

– Translation Look-aside Buffer

Translation Lookaside Buffer (TLB)

• Each virtual memory reference can cause two

physical memory accesses

– One to fetch the page table

– One to fetch the data– One to fetch the data

Translation Lookaside Buffer (TLB)

• Each virtual memory reference can cause two

physical memory accesses

– One to fetch the page table

– One to fetch the data– One to fetch the data

• To overcome this problem a high-speed cache

is set up for page table entries

Translation Lookaside Buffer (TLB)

• Each virtual memory reference can cause two

physical memory accesses

– One to fetch the page table

– One to fetch the data– One to fetch the data

• To overcome this problem a high-speed cache

is set up for page table entries

• Contains page table entries that have been

most recently used (a cache for page table)

Translation Lookaside Buffer (TLB)

Effective Access Time

– Effective Access time (EAT)

• m – memory cycle, α - hit ratio, ε - TLB lookup time

Multilevel Page Tables

• Given:
– 4KB (212) page size

– 32-bit address space

– 4-byte PTE

Multilevel Page Tables

• Given:
– 4KB (212) page size

– 32-bit address space

– 4-byte PTE

• Problem:
– Would need a 4 MB page table!

• 220 *4 bytes• 220 *4 bytes

Multilevel Page Tables

• Given:
– 4KB (212) page size

– 32-bit address space

– 4-byte PTE

• Problem:
– Would need a 4 MB page table!

• 220 *4 bytes• 220 *4 bytes

• Common solution
– multi-level page tables

– e.g., 2-level table (P6)
• Level 1 table: 1024 entries, each

of which points to a Level 2 page
table.

• Level 2 table: 1024 entries, each
of which points to a page

Summary: Multi-level Page Tables

•Instead of one large table, keep a

tree of tables

–Top-level table stores pointers to

lower level page tables

•First n bits of the page number == •First n bits of the page number ==

index of the top-level page table

•Second n bits == index of the 2nd-

level page table

•Etc.

Example: Two-level Page Table

• 32-bit address space (4GB)

Example: Two-level Page Table

• 32-bit address space (4GB)

• 12-bit page offset (4kB pages)

Example: Two-level Page Table

• 32-bit address space (4GB)

• 12-bit page offset (4kB pages)

• 20-bit page address• 20-bit page address

– First 10 bits index the top-level page table

– Second 10 bits index the 2nd-level page table

– 10 bits == 1024 entries * 4 bytes == 4kB == 1 page

Example: Two-level Page Table

• 32-bit address space (4GB)

• 12-bit page offset (4kB pages)

• 20-bit page address• 20-bit page address

– First 10 bits index the top-level page table

– Second 10 bits index the 2nd-level page table

– 10 bits == 1024 entries * 4 bytes == 4kB == 1 page

• Need three memory accesses to read a memory
location

Why use multi-level page tables?

• Split one large page table into many page-sized
chunks

– Typically 4 or 8 MB for a 32-bit address space

Why use multi-level page tables?

• Split one large page table into many page-sized
chunks

– Typically 4 or 8 MB for a 32-bit address space

• Advantage: less memory must be reserved for the • Advantage: less memory must be reserved for the
page tables

– Can swap out unused or not recently used tables

Why use multi-level page tables?

• Split one large page table into many page-sized
chunks

– Typically 4 or 8 MB for a 32-bit address space

• Advantage: less memory must be reserved for the • Advantage: less memory must be reserved for the
page tables

– Can swap out unused or not recently used tables

• Disadvantage: increased access time on TLB miss

– n+1 memory accesses for n-level page tables

Address Conversion

• That 20bit page address can be optimized in a variety of

ways

– Translation Look-aside Buffer

– Multilevel Page Table

– Inverted Page Table– Inverted Page Table

Problems

Problem 1

For each of the following decimal virtual

addresses, compute the virtual page number

and offset for a 4 KB page and for an 8 KB

page: 20000, 32768, 60000.page: 20000, 32768, 60000.

41

Problem 1 Solution

Address Page Number (4KB) Offset (4KB) Page Number (8KB) Offset (8KB)

20000 4 3616 2 3616

32768 8 0 4 0

60000 14 2656 7 2656

Problem 2

Consider the page table of the figure. Give the physical

address corresponding to each of the following virtual

addresses:

– 29

– 4100– 4100

– 8300

43

Problem 2 Solution

Consider the page table of the figure. Give the physical

address corresponding to each of the following virtual

addresses:

– 29

– 4100– 4100

– 8300

44

29: Physical address: 8K + 29 = 8221
4100: Physical address: 4K + (4100 – 4K) = 4100
8300: Physical address: 24K + (8300 – 8K) = 24684

Problem 3

A machine has 48 bit virtual addresses and 32

bit physical addresses. Pages are 8 KB. How

many entries are needed for the page table?

45

Problem 3 Solution

A machine has 48 bit virtual addresses and 32

bit physical addresses. Pages are 8 KB. How

many entries are needed for the page table?

Page size = 8 KB = 2^13 B

Offset = 13 bits

of virtual pages = 2^(48 – 13) = 2^35 = # of entries

in page table

46

Problem 4

Consider a machine such as the DEC Alpha 21064

which has 64 bit registers and manipulates 64-bit

addresses.

If the page size is 8KB, how many bits of virtual pageIf the page size is 8KB, how many bits of virtual page

number are there?

If the page table used for translation from virtual to

physical addresses were 8 bytes per entry, how much

memory is required for the page table and is this

amount of memory feasible?

47

Problem 4 Solution

Page size = 8 KB = 2^13 B

Offset = 13 bits

Bits for virtual page number = (64 – 13) = 51

of page table entries = 2^51

Size of page table = 2^51 * 8 B =2^54 B = 2^24

GB

48

Problem 5

A computer with a 32-bit address uses a two-

level page table. Virtual addresses are split

into 9-bit top-level page table field, an 11 bit

second-level page table field, and an offset. second-level page table field, and an offset.

How large are the pages and how many are

there in the address space?

49

Problem 5 Solution

A computer with a 32-bit address uses a two-

level page table. Virtual addresses are split

into 9-bit top-level page table field, an 11 bit

second-level page table field, and an offset. second-level page table field, and an offset.

How large are the pages and how many are

there in the address space?

Offset = 32 – 9 – 11 = 12 bits

Page size = 2^12 B = 4 KB

Total number of pages possible = 2^9 * 2^11 = 2^20

50

Problem 6

Virtual

Address

(bits)

Page Size # of Page

Frames

of Virtual

Pages

Offset

Length

(bits)

Addressable

Physical

Memory

Fill in the following table:

(bits) (bits) Memory

16 256 B 2^2

32 1 MB 2^4

32 1 KB 2^8

64 16 KB 2^20

64 8 MB 2^16

51

Problem 6 Solution

Fill in the following table:

Virtual

Address (bits)

Page Size # of Page

Frames

of Virtual

Pages

Offset

Length

(bits)

Addressable

Physical

Memory

16 256 B = 2^8 2^2 2^8 8 2^10 = 1 KB

52

16 256 B = 2^8 2^2 2^8 8 2^10 = 1 KB

32 1 MB = 2^20 2^4 2^12 20 2^24 = 16 MB

32 1 KB = 2^10 2^8 2^22 10 2^18 = 256 KB

64 16 KB = 2^14 2^20 2^50 14 2^34 = 16 GB

64 8 MB = 2^23 2^16 2^41 23 2^39 = 512 GB

Problem 7

Fill in this table with the correct page evictions.

Physical memory contains 4 pages.

Page

Accesses

0 1 2 3 4 1 3 4 4 5 3 1 2 0 4 5 4

Accesses

Optimal - - - - 0 - - - - 4 - - - 3 2 - -

FIFO - - - -

LRU - - - -

LFU - - - -

MRU - - - -

53

Problem 7 Solution

Fill in this table with the correct page evictions.

Physical memory contains 4 pages.

Page

Accesses

0 1 2 3 4 1 3 4 4 5 3 1 2 0 4 5 4

54

Accesses

Optimal - - - - 0 - - - - 4 - - - 3 2 - -

FIFO - - - - 0 - - - - 1 - 2 3 4 5 1 -

LRU - - - - 0 - - - - 2 - - 4 5 3 1 -

LFU - - - - 0 - - - - 2 - - 5 2 - 0 -

MRU - - - - 3 - 1 - - 4 - 3 - - 0 - -

