Outline

« MP6 Overview
« Socket Programming
« Hypertext Transfer Protocol

CS 241 Section Week #11
(4/08/10)
MP6
Goal: Build a simple HTTP web server
 Setting up the TCP sockets
MP6

e Handle multiple requests at the same time
by using threads

e Return pages stored locally

e Act as a proxy to retrieve a webpage from
another website and send it to the client

MP6 Tasks

Create a socket to listen for incoming TCP
connections on a specific port.

Upon accepting a connection, launch a thread
for the incoming TCP connection

In the handler for each connection, you need to
recv() data from the socket.

MP6 Tasks

We give you in aux_functions.h
¢ astruct called HTTPResponse
* getResponseString():
¢ getFileNotFoundResponseString()
¢ Notify browser that the file is not found.
¢ getNotImplementedResponseString()

¢ Notify browser that you are unable to handle
its request

¢ getFileNameFromHTTPRequest()

* Return the requested file contained in the
request

MP6 Tasks

Using HTTPResponse you must now use send() to send
the contents of HTTPResponse.vptrResponse back to the
web browser

You will need to continue to recv() requests on this
socket until the web browser closes its TCP connection
with your web server

Upon receiving proxy request, you should create a client,
open the requested url and send the content back to the
browser.

You should modify the links inside the external pages so
that the later transfer of data are done through the
proxy

Socket Programming

Socket

across computer networks

Standard APIs for sending and receiving data

Introduced by BSD operating systems in 1983

» POSIX incorporated 4.3BSD sockets and XTI in

2001

e #include <sys/socket.h>

Typical TCP Server-Client

client

- socket

connect

Chron;
20 sy,

*
Eal] U\c"“ ftal

ar-““""‘m'

W

socket
bind
listen

accept

server

el

Typical TCP Server-Client

Typical UDP Server-Client

client

EE.

=m v

socket
connect

write

read
close

——]

socket
bind
listen

accept

read
write

close

server

client

- socket

" sendto

recvirom
close

socket
bind

recvirom

sendto

Server

.

Programming Sockets

e To create a socket in C, you need to run two
commands:
¢ socket()
* bind()

socket

int socket(int domain, int type, int protocol);
. Returns a nonnegative integer (socket file descriptor)

« Parameters
¢ domain: AF_INET (IPv4)
« type: SOCK_STREAM (TCP) or SOCK_DGRAM (UDP)
. protc))col: 0 (socket chooses the correct protocol based on
type

* TCP: socket(AF_INET,SOCK_STREAM, 0);
» UDP: socket(AF_INET, SOCK_DGRAM, 0);

bind

int bind(int socket,
const struct sockaddr *address,
socklen_t address_len);

« Associates the socket with a port on your local machine
 struct sockaddr_in used for struct sockaddr
sa_family_t sin_family; /*AF_INET */

in_port_t sinport; /* port number */
structin_addr sin_addr; /* IP address */

Programming Sockets

e UDP is packet-based

e TCP is connection-based

* you need to establish a connection in TCP:
* Server: listen(), accept()
¢ Client: connect()

A Generic TCP Server & Client Script

What is the problem with the

A Generic TCP Server & Client Script

Handle one request at a time

socket() socket() N X

bind() server? bind() How to fix this?

listen() listen()

while (...) { while (...) { while (...) { while (...) {

accept() accept()

send()/recv() send()/recv() send()/recv() send()/recv()

} } } }

close() close() close() close()
listen accept

int listen(int socket, int backlog);

Puts the socket into the passive state to accept incoming
requests

Internally, it causes the network infrastructure to allocate
queues to hold pending requests
« backlog: number of connections allowed on the incoming
queue

bind should be called beforehand

int accept(int socket, struct sockaddr *restrict
address, socklen_t *restrict address_len);

« Accepts the pending requests in the incoming queue

» *address is used to return the information about the client
making the connection.
* sin_addr.s_addr holds the Internet address

» listen should be called beforehand

* Returns nonnegative file descriptor corresponding to the
accepted socket if successful, -1 with errno set if
unsuccessful

connect

int connect(int socket, const struct sockaddr
*address, socklen_t address_len);

 Establishes a link to the well-known port of the
remote server

« Initiates the TCP 3-way handshake
« Cannot be restarted even if interrupted

* Returns 0 if successful, -1 with errno set if
unsuccessful

Programming Sockets

* In both TCP and UDP, you send and receive by
using the same calls:
¢ send() / sendto()
¢ recv() / recvfrom()

send and sendto

int send(int socket, const void *msg, int len, int
flags);

int sendto(int socket, const void *msg, int len, int
flags, const struct sockaddr *to, socklen_t tolen);

send sends along an established connection (TCP),
while sendto sends to an address (UDP).

The extra two parameters specify the destination.

recv and recvfrom

int recv(int socket, const void *msg, int len, int
flags);

int recvfrom(int socket, const void *msg, int len, int
flags, const struct sockaddr *from, socklen_t
*fromlen);

recyv receives from an established connection

(TCP), while recvfrom receives from anywhere
(UDP), and saves the address.

The extra two parameters specify the source.

close and shutdown

int close(int socket);
int shutdown(int socket, int how);

« close
« Prevents any more reads and writes
« same function covered in file systems

« shutdown
« provides a little more control
« how
« 0 - Further receives are disallowed
« 1 Further sends are disallowed
* 2-sameasclose

+ Returns 0 if successful, -1 with errno set if unsuccessful

TCP vs. UDP at a glance

TCP ubDP
Socket type SOCK_STREAM SOCK_DGRAM
Form of data transmitted Stream Packets
Calls for sending and receiving send, recv sendto, recvfrom
Uses sessions? Yes No
Overhead for ordering packets Substantial Minimal
Example Services FTP, HTTP DNS, SNMP

Using Sockets in C

#include <sys/socket.h>
#include <sys/types.h>
#include <netinet/in.h>
#include <unistd.h>

On csil-core:
gcc —o test test.c

On some systems, e.g., Solaris:
gcc —o test test.c —Isocket -Insl

TCP Client/Server Example

Run the provided server.c and client.c executables in
two separate windows.

client sends the string “Hello World!” to IP address 127.0.0.1
port 10000

server listens on port 10000 and prints out any text received

HyperText Transfer Protocol

HTTP

» Hypertext Transfer Protocol

* Delivers virtually all files and resources on the
World Wide Web

* Uses Client-Server Model

* HTTP transaction

* HTTP client opens a connection and sends a
request to HTTP server

* HTTP server returns a response message

HTTP (continued)

* Request

¢ GET /path/to/file/index_html HTTP/1.0
¢ Other methods (POST, HEAD) possible for request

* Response
e« HTTP/1.0 200 OK
« Common Status Codes
« 200 OK
¢ 404 Not Found
« 500 Server Error

Sample HTTP exchange

e Scenario

« Client wants to retrieve the file at the following URL
(http://www.somehost.com/path/file.html)

* What a client does

« Client opens a socket to the host www.somehost.com, port
80

Client sends the following message through the socket
GET /path/file_html HTTP/1.0

From: someuser@uiuc.edu
User-Agent: HTTPTool/1.0
[blank line here]

Sample HTTP exchange Reference

* What a server does « Beej's Guide to Network Programming
« Server responds through the same socket])
HTTP/1.0 200 OK * http://beej.us/guide/bgnet/

Date: Mon, 17 Apr 2006 23:59:59 GMT
Content-Type: text/html
Content-Length: 1354

<html>
<body>
(more file contents)

</body>
</html>

