CS 241
Section Week #1

1/28/10

About Sections

e Each week:

— We'll spend additional time on topics that the
instructors feel should be reviewed.

— We'll prepare you for the upcoming homework or
MP submissions.

— We’ll provide extra review/guidance for upcoming
exams.

Topics This Section

Reading and Writing to the Console

Memory

Precedence

Casting
Strings

Console 1/O

¢ In lecture, you saw the printf() command.
— printf(“%s: %d”, str, i);
— printf(“%c%c%c”, c1, c2, c3);

* In C1/0, you will provide a format string with
a parameter list of values to populate the
string with.

Console I/O Console I/O

¢ Inlecture, you saw the printf() command. ¢ The printf() man page describes all the
— printf(“%s: %d”, str, i); different types of specifies you can use.

— printf(“%c%c%c”, c1, 2, c3);
— * Common specifies:

— %c A single character

— %d An integer value

— %f A floating point value
— %s A string

— %p A pointer

* The embedded format tags tell C how to
format the variables you provide.

Console I/O Console 1/O
e Example #1: e Example #1:
char *s = “the cat and the hat”; char *s = “the cat and the hat”;
printf(“%s”, s); printf(“%s”, s); the cat and the hat

printf(“%c”, *s); printf(“%c”, *s); t

Console I/O

e Example #1:

char *s = “the cat and the hat”;
printf(“%s”, s); the cat and the hat

printf{"c’, *s);

Console I/O

e Example #2:

inti=42;
printf(“%d”, i);
printf(“%c”, i);

Console I/O

e Example #2:

inti=42;
printf(“%d”, i); 42
printf(“%c”, i); *

Console 1/O

e Example #2:

inti=42;
printf(“%d”, i); 42

print(‘%c,), * [

Console I/O

* Reading from the console uses nearly the
same |/O format as writing to the console.

— Key difference: All variables must be references.

Arrays

char a[8]; /* array of bytes */
- 1)
char 1E)[4] [2]: /* 2-dimensional

array */
SN s W

e printf(“%d”, i); Writes i to console.
e scanf(“%d”, &i); Reads an int from console int c[2]; /* array of 32-bit
into i. words */_ ‘
-] I e 13
i
Memory Referencing and dereferencing

Memory is just a big array of bytes
Pointers are indicies into memory

The type of a pointer determines whether the memory

it indexes is viewed as a char, an int, etc.
void indicates the no-value type.

void *p =

(char *) p

@nt *) p

]
[

The & operator creates a pointer to a variable
(takes the address of the memory location
holding the variable), while the * operator
reads the data which a pointer references:
int x;
int *xptr = &x;

/* xptr = OxAF981DF8 */

int y = *xptr;
/*y =x*/

Process memory layout

kernel memory

system data: argv, env _|+—| argv: OXAFA47E44

stack +—| &argv: OXAFA47DD4
gap
dynamic memory «—| Ox0804A008

uninitialized data (“bss”)

initialized static data

—[0x08049688 |

program code
(“text segment”)

low memory

NULL: 0xO

Pointer arithmetic

char a[8];

!

/* array of bytes */

- [T 1)

/* p, a: OxXAF99EFDC */

- e 1)

char *q = a+3; /* q: OXAF99EFDF */

]

-~ T

[TTTTT -

Pointer arithmetic (2)

char a[8]; /* array of bytes */

LTI TTTTTT T)+
char *q = at+3; /* q: OXAF99EFDF */

|
LTI T T T T
char *r = &a[3]; /* r: OxAF99EFDF */

[e 1)

Pointer arithmetic (3)

int b[2];

'

/* array of 4-byte words

LT

[T 1]

int *q = b+1;

/* q: OXAF99EFEO */

([

A

[l 1

char *r = &b[1]; /* r: OXAF99EFEO */

A

-]

[TTTT1 -

Memory

¢ Three main categories of memory that we’ll
concern ourselves with in CS 241:
— Static Memory:
¢ Memory that is declared with the ‘static’ keyword.
* Memory is only allocated once.
* Memory is always of fixed size.
* Memory is never freed.

Memory

¢ Three main categories of memory that we’ll
concern ourselves with in CS 241:

— Heap Allocated Memory:
* Memory that is allocated with memory-allocating
functions.
— malloc(), calloc(), etc
« Allocated only when the memory-allocating function is
called.
* Freed only when free() is called.

Memory

¢ Three main categories of memory that we’ll
concern ourselves with in CS 241:
— Stack Allocated Memory:

* Memory that is allocated within the scope of a function.

« Stores local variables and function parameters
¢ Allocated when the function begins execution.
* Freed when the function finishes execution.

* The stack memory associated with a given function is
referred to as a “stack frame”.

Memory

¢ Code Execution:

' void foo(int mylnt)
{

int *x = (int *)malloc(sizeof(int));
free(x);

* Memory:

Memory

¢ Code Execution:

) t

void foo(int mylnt)

int *x = (int *)malloc(sizeof(int));

free(x);

* Memory:

myint

Memory

¢ Code Execution:

-
¥

void foo(int mylnt)
{

int *x = (int *)malloc(sizeof(int));
free(X);

* Memory:

4bytes

mylnt

Memory

¢ Code Execution:

ﬂ}

void foo(int mylnt)

int *x = (int *)malloc(sizeof(int));

free(x);

* Memory:

*x

Memory

¢ Code Execution:

)
ol

void foo(int mylnt)

int *x = (int *)malloc(sizeof(int));
free(x);

* Memory:

¢ Code Execution:

... start with dog(); o

* Memory:

Memory

char *cat(char *x, int i)
{

r=a4;

char *resul
sprintf(resi
return resu

. %S x %dU, x, i);

¥
= oid dog()
{
char s[] = "my cat";
int z = 12;
cat(s, 2);
3

(char *)malloc(20);

¢ Code Execution:

* Memory:

Memory

char *cat(char *x, int i)
{

static int r = 4;

x[3] = "h";

char *result = (char *)malloc(20);
[DH

sprintf(result, "%s x %d", x,
return result;

3
void dogQ)
{
L . s[l = "my cat";
int z = 12;

cat(s, 2);

¢ Code Execution:

* Memory:

“my cat” ﬂ
*s

Memory

char *cat(char *x, int i)
{

sprintf(res
return result;

s x kd*, x, i);
3
void dog()

char s[] = “my cat";

int z = 12;
cat(s, z);

static int r = 4;
x[3] = "h*;
char *resul (char *)malloc(20);

¢ Code Execution:

* Memory:

2-12

“my cat” ﬂ
*s

Memory

int i)

char *cat(char *x
{

static int r = 4;

x[3] = "h*;

char *result = (char *)malloc(20);
sprintf(result, "%s x %d", x, i);
return result;

3

void dogQ)
{
char s[] = “my cat";

int z = 12;
B cat(s,)
3

¢ Code Execution:

* Memory:

cat() i-12

Stack Frame x
dog) o
log(-
Stack Frame [—mycat’ |

Memory

g char *cat(char *x. int i)
{

static int r = 4;
x[3] = "h";

sprintf(resul ks x %d", x, 1);
return result;
b
void dog()
char s[] = "my cat";
int z = 12;
cat(s, z)

char *result = (char *)malloc(20);

¢ Code Execution:

* Memory:

cat() i-12

Stack Frame x
- =12
o =
Stack Frame |—m¥.cat’__|

char *result
sprintf(resu
return result;

(char *)malloc(20);
. s x %dT, x, §);

3

void dogQ)
{

char s[] = "my cat”;
int z = 12;
cat(s, z);

¢ Code Execution:

* Memory:

cat() i=12
Stack Frame ~
=) z=12
log " o
Stack Frame oy ot
s

Sty |4]

Memory

char *cat(char *x, int i)

static int r = 4;

sprintf(result, "%s x %d", x, i);
return result;

s

void dog()
char s[] = "my cat”;
int z = 12;

cat(s, z);

-x[ZJ ="h
char *result = (char *)malloc(20);

¢ Code Execution:

* Memory:

]

Heap Memory 20 bytes.
. Fresult
St::k'F(r):me 1 i:z
sos0) s

Stack Frame ""(:"’

!

Sty | =1]

Memory

char *cat(char *x, int i)
static int r = 4;
x[3] = "h*;

-mw *result = (char *)malloc(20);
sprintf(result, "%s x %d", x, i);
return result;

3

void dog(Q)

{
char s[] = "my cat";
int z = 12;
cat(s, 2);

¢ Code Execution:

* Memory:

Heap Memory | “my hat x 12" j
*result

cat()
Stack Frame

i=12

*Xx
dog) =
ogl o
Stack Frame %
s

Memory

char *cat(char *x, int i)

s tr=4
" .
char * (char *)malloc(20);
spri s x %d, x, 1);
l‘ return resi

3

void dogQ)
char s[] = "my cat";
int z 25

cat(s,

¢ Code Execution:

* Memory: {

Memory

char *cat(char *x, int i)
c
{

return resi

}

void dogQ)
{

Heap Memory | “my hatx 12" l’ cat(

s int r = 4;

x "

char *result = (char *)malloc(20);
sprintf(“hs x %d", i;

- -1

log =

Stack Frame |y hat’ | j
*s

Use your stack wisely

¢ What's wrong with this code?

int

char *cat()

char str[4];
strepy(str, “cat”);
return str;

mainQ)

char *s;
s = catQ);

Use your stack wisely

¢ What’s wrong with this code?

char *cat()
{

char str[4];
strcpy(str, “cat”);
return str;

3

int mainQ)
char *s;
s = catQ);

To fix it, use a heap variable

¢ What's

Use your stack wisely

wrong with this code?

char *cat(

D

char str[4];
strepy(str, “cat™);

return str; char *cat(Q)
char *str = (char*)malloc(4*sizeof(char));
int mainQ) strcpy(str, “cat”);
return str;
char *s; H
s = cat();
int mainQ)
char *s;
s = cat();

Use your stack wisely

* What’s wrong with this code?

char *cat()
char str[4];
strcpy(str, “cat”);
return str;
int mainQ)

char *s;
s = cat();

To fix it, pass in a pointer to the
| variable you want to use

Use your stack wisely

¢ What's wrong with this code?

char *cat()

char str[4];
strepy(str, “cat”);

return str; void cat(char* str)
3
strcpy(str, “cat”);
int mainQ)
char *s; int mainQ)
s = cat();
char s[4];
cat(s);

Precedence

¢ When multiple operations are applied to

variables in C, an order of precedence is
applied.
—Ex 0if (p++ <=3) {/* . */}

* Does p get incremented by one and then checked if it is

less than or equal to 3?

¢ Does p get checked if it is less than or equal to 3 and

then incremented by one?

Precedence

e Two examples
—Exl: if (p++ <=3) { /* . */}
—-Ex2: ifF (++p<=3) {/* . *}

¢ Result:
— Example 1’s if statement is TRUE.
¢ (p <=3) is done before (p++)

— Example 2’s if statement is FALSE.
¢ (p++) is done before (p <= 3)

Precedence

¢ There are plenty of tables of precedence for
the C language all over the Internet.
— General Rule: If you’re not sure, always enclose
your statements in params!
e Eg: *z+4; 2> *(z+4);
* Eg: (a<=3)?(a++):((q<=8)?(q-) : (a++));

Memory Casting

¢ One of the most useful built in functions in C
issizeof().

* On most the machines you’ll be working on:
— sizeof(int) ==
— sizeof(void *) == (on 64-bit machines)
— sizeof(double) ==
— sizeof(char) ==1

Memory Casting

¢ One observation that can be quickly made:
— sizeof(int *) ==
— sizeof(void *) ==
— sizeof(double *) ==8
— sizeof(char *) ==
— sizeof(zzz *) ==

Memory Casting

¢ One observation that can be quickly made:
— sizeof(int *) ==8
— sizeof(void *) ==

When functions don’t care what the

—sizeof(double *) ==

data is: they’ll return a void *!

—sizeof(char *) ==8
— sizeof(zzz *) ==

Memory Casting

¢ Function definition for malloc():
—void * malloc (size_t size);

* However, your code may look something like:
—char *s = malloc(1024);

Memory Casting

Pointers may freely be cast from one type to another since they’re of the same size!

Memory Casting

This is a blessing and a curse...

¢ However, your code may look something like:
—char *s = (char *)malloc(1024);

¢ However, your code may look something like:
—char *s = (char *)malloc(1024);

Memory Casting

This is a blessing and a curse...

Memory Casting

Modifying f now corrupts your string s!

¢ However, your code may look something like:

—char *s = (char *)calloc(1024, 1);
strcpy(s, "'some data™);
float *f = (float *)s;

e However, your cod&®tniy*fook something like:

—char *s = (char *)calloc(1024, 1);
strcpy(s, ''some data');
float *f = (float *)s;

Strings

Review of strings
* Sequence of zero or more characters,
terminated by nuLL (literally, the integer value o)
.+ NULL terminates a string, but isn’t part of it

— important for strien() — length doesn’t include the
NUL

« Strings are accessed through pointers/array
names

e #include <strings.h> at program start

String literals

e Evaluating " dog” results in memory allocated
for three characters <d-, <0”, <g*, plus

terminating nuLL
char *m = " dog” ;
¢ Note: If mis an array name, subtle difference:
char m[10] = " dog” ;

String literals

e Evaluating " dog” results in memory allocated
for three characters <d°, <07, <g, plus

terminating nuLL
char *m = " dog” ;
¢ Note: If mis an array name, subtle difference:
char m[10] = " dog” ;

10 bytes are allocated for this array

String literals
¢ Evaluating " dog” results in memory allocated
for three characters <d, <0”, <g”, plus
terminating nuLL

char *m = " dog” ;
¢ Note: If mis an array name, subtle difference:
char m[10] = "deg” ;

10 bytes are allocated for this array

This is not a string literal;
It’s an array initializer in disguise!

Equivalent to
{d .o, g , \0}

String manipulation functions

* Read some “source” string(s), possibly write

to some “destination” location

char *strcpy(char *dst, char const *src);
char *strcat (char *dst, char const *src);

¢ Programmer’s responsibility to ensure that:
— destination region large enough to hold result

— source, destination regions don’t overlap
¢ “undefined” behavior in this case —
according to C spec, anything could happen!

char m[10] = " dog” ;
strcpy(m+1, m);

String manipulation functions

¢ Read some “source” string(s), possibly write
to some “destination” location

char *strcpy(char *dst, char const *src);

char *strcat (char *dst, char const *src);

e Programmer’s responsibility to ensure that:
— destination region large enough to hold result

— source, destination regions don’t overlap

* “undefined” behavior in this case —
Assuming that the implementation of STrcpy
starts copying left-to-right without checking for
the presence of a terminating NUL first, what
will happen?

according to C spec, 3

char m[10] = "
strcpy(m+1, m);

strlen() andsize_ t

size_t strlen(char const *string);
/* returns length of string */

. size_tis an unsigned integer type, used to define
sizes of strings and (other) memory blocks
— Reasonable to think of “size” as unsigned”...
— But beware! Expressions involving strien() may be
unsigned (perhaps unexpectedly)
if (strlen(x) — strilen(y) >=0) ...
* avoid by casting:
(Cint) (strlen(x) — strlen(y)) >= 0)
— Problem: what if x or y is a very large string?

* a better alternative: (strien(x) >= strien(y))

strlen() andsize_t

size_t strlen(char const *string);
/* returns length of string */

. size_t iS an unsigned integer type, used to define
sizes of strings and (other) memory blocks
— Reasonable to think of “size” as unsigned”...

— But beware! Expressions involving strien() may be
unsigned (perhaps unexpectedly)
if (strlen(x) — strlen(y) >= (D\.\m
* avoid by casting:
((int) (strlen(x) — strlen(y)) >= 0)
— Problem: what if x or y is a very large string?

¢ a better alternative: (strien(x) >= strlen(y))

strcmp() “string comparison”

int strcmp(char const *sl, char const *s2);
— returns a value less than zero if s1 precedes s2 in
lexicographical order;

—returns zero if s1 and s2 are equal;
— returns a value greater than zero if s1 follows s2.
¢ Source of a common mistake:

— seems reasonable to assume that strcmp returns
“true” (nonzero) if s1 and s2 are equal; “false”
(zero) otherwise

— In fact, exactly the opposite is the case!

Restricted vs. unrestricted string functions

 Restricted versions: require an extra integer
argument that bounds the operation

char *strncpy(char *dst, char const *src, size_t len);

char *strncat(char *dst, char const *src, size_t len);
int strncmp(char const *sl1, char const *s2, size_t len);

— “safer” in that they avoid problems with missing NULL
terminators

— safety concern with strncpy:
If bound isn’t large enough, terminating NUL won’t be
written

Safe alternative:
strncpy(buffer, name, BSIZE);
buffer[BSIZE-1] = ' \0' ;

String searching

char *strstr(const char *haystack, const char
*needle);

/* return a pointer to first occurrence of the
substring needle in the string haystack. or NULL if
the substring is not found */

