
MP6 – Web Proxy overview

CS241 Sp10

What is the MP about?

� Networking
� Multi-threaded web server
� Web client
� The server should respond to client requests with local pages

or by fetching remote internet pages

� HTTP 1.1
Reduced set of functions� Reduced set of functions

� Interpret the requests
� Send error messages
� Make requests to another server

� Resources
� You can use code snippets from class or the Beej’s guide
� If you do, put a reference in the comments of your code

Task I - Listen
Listen Threads Request Prepare the

response
Send the
response

Proxy
requests Rewrite links KeepAlive

connections SIGINT

� argv[1] is the port you should listen to for
incoming connections
� Choose a port between 1024 and 32000
� On the same host only one proxy can listen on a single

port, choose random port# to avoid overlaps

� Steps:
� Create a socket

� set option SO_REUSEADDR to avoid bind failures

� Bind to the host address
� Listen
� Accept

Task I - Listen - Testing
Listen Threads Request Prepare the

response
Send the
response

Proxy
requests Rewrite links KeepAlive

connections SIGINT

� Run your program
� ./proxy <port#>

� Open a telnet connection on the same host
� telnet localhost <port#>

� Your server was blocked on accept() before the
client connects, accept should return a file descriptor
for the new connection

Task 2 – Threads
Listen Threads Request Prepare the

response
Send the
response

Proxy
requests Rewrite links KeepAlive

connections SIGINT

� Your proxy must handle multiple connections at the
same time:
� Requests from different clients
� Concurrent requests from the same browser

� accept() must be called in a loop� accept() must be called in a loop
� Every incoming connection spawns a new thread that

handles it
� Thread, not processes!
� The main thread keeps waiting for new connections and

spawns new threads as they come

Task 2 – Threads - Testing
Listen Threads Request Prepare the

response
Send the
response

Proxy
requests Rewrite links KeepAlive

connections SIGINT

� Have the program print a message on stdout when a new
thread is started

� Run your program
� ./proxy <port#>

� Open a telnet connection on the same host
� telnet localhost <port#>

� Open another telnet connection on the same host
� telnet localhost <port#>

� If your server is correctly spawning threads the second telnet
should create a new connection and your proxy should print
two messages on stdout

Task 2 – Threads - Testing
Listen Threads Request Prepare the

response
Send the
response

Proxy
requests Rewrite links KeepAlive

connections SIGINT

� Have the program print a message on stdout when a new
thread is running

� Run your program
� ./proxy <port#>

� Open a telnet connection on the same host
� telnet localhost <port#>

� Open another telnet connection on the same host
� telnet localhost <port#>

� If your server is correctly spawning threads the second telnet
should create a new connection and your proxy should print
two messages on stdout

would do with a pipe. Time to behave
You can now READ and WRITE as you

would do with a pipe. Time to behave
as a webserver now!

Task 3 – HTTP 1.1 Request
Listen Threads Request Prepare the

response
Send the
response

Proxy
requests Rewrite links KeepAlive

connections SIGINT

� HTTP 1.1 request sent by a browser for
index.html

GET /index.html HTTP/1.1
Host: localhost:1234
Connection: keep-alive
User - Agent: Mozilla/5.0 (X11; U; Linux i686; en - US) User - Agent: Mozilla/5.0 (X11; U; Linux i686; en - US)
AppleWebKit/532.5 (KHTML, like Gecko) Chrome/4.0.24 9.43
Safari/532.5
Accept:
application/xml,application/xhtml+xml,text/html;q=0 .9,text/pl
ain;q=0.8,image/png,*/*;q=0.5
Accept-Encoding: gzip,deflate
Accept-Language: en-US,en;q=0.8
Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.3

Task 3 – HTTP 1.1 Request
Listen Threads Request Prepare the

response
Send the
response

Proxy
requests Rewrite links KeepAlive

connections SIGINT

� HTTP 1.1 request sent by a browser for
index.html

GET /index.html HTTP/1.1
Host: localhost:1234
Connection: keep-alive
User - Agent: Mozilla/5.0 (X11; U; Linux i686; en - US) User - Agent: Mozilla/5.0 (X11; U; Linux i686; en - US)
AppleWebKit/532.5 (KHTML, like Gecko) Chrome/4.0.24 9.43
Safari/532.5
Accept:
application/xml,application/xhtml+xml,text/html;q=0 .9,text/pl
ain;q=0.8,image/png,*/*;q=0.5
Accept-Encoding: gzip,deflate
Accept-Language: en-US,en;q=0.8
Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.3

FILENAME and PROTOCOL
GET /index.html HTTP/1.1
Specifies what file the client is asking for

Task 3 – HTTP 1.1 Request
Listen Threads Request Prepare the

response
Send the
response

Proxy
requests Rewrite links KeepAlive

connections SIGINT

� HTTP 1.1 request sent by a browser for
index.html

GET /index.html HTTP/1.1
Host: localhost:1234
Connection: keep-alive
User - Agent: Mozilla/5.0 (X11; U; Linux i686; en - US) Host: (REQUIRED)User - Agent: Mozilla/5.0 (X11; U; Linux i686; en - US)
AppleWebKit/532.5 (KHTML, like Gecko) Chrome/4.0.24 9.43
Safari/532.5
Accept:
application/xml,application/xhtml+xml,text/html;q=0 .9,text/pl
ain;q=0.8,image/png,*/*;q=0.5
Accept-Encoding: gzip,deflate
Accept-Language: en-US,en;q=0.8
Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.3

Host: (REQUIRED)
Host: localhost:1234
HTTP 1.1 supports multiple hostnames on the same
IP. This header is how it is done. Every request
must include this field

Task 3 – HTTP 1.1 Request
Listen Threads Request Prepare the

response
Send the
response

Proxy
requests Rewrite links KeepAlive

connections SIGINT

� HTTP 1.1 request sent by a browser for
index.html

GET /index.html HTTP/1.1
Host: localhost:1234
Connection: keep-alive
User - Agent: Mozilla/5.0 (X11; U; Linux i686; en - US) Persistent connectionUser - Agent: Mozilla/5.0 (X11; U; Linux i686; en - US)
AppleWebKit/532.5 (KHTML, like Gecko) Chrome/4.0.24 9.43
Safari/532.5
Accept:
application/xml,application/xhtml+xml,text/html;q=0 .9,text/pl
ain;q=0.8,image/png,*/*;q=0.5
Accept-Encoding: gzip,deflate
Accept-Language: en-US,en;q=0.8
Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.3

Persistent connection
Connection: keep -alive
If “keep-alive” the browser will be sending more
requests on the same socket. If “close” the server
is expected to close the socket at the end of the
current response.

Task 3 – HTTP 1.1 Request
Listen Threads Request Prepare the

response
Send the
response

Proxy
requests Rewrite links KeepAlive

connections SIGINT

� To extract the filename from the request:

getFileNameFromHTTPRequest(void *vptrRequest, size_ t length)

� Possible return values:� Possible return values:
� NULL� The request is not valid
� / � The default webpage (/index.html)
� /path_to_filename/filename � The filename the

client is requesting
� /proxy/<hostname>/filepath � The request is for

an external website

Task 3 – HTTP 1.1 Request
Listen Threads Request Prepare the

response
Send the
response

Proxy
requests Rewrite links KeepAlive

connections SIGINT

� To extract the filename from the request:

getFileNameFromHTTPRequest(void *vptrRequest, size_ t length)

� Possible return values:Webserver ROOT directory:� Possible return values:
� NULL� The request is not valid
� / � The default webpage (/index.html)
� /path_to_filename/filename � The filename the

client is requesting
� /proxy/<hostname>/filepath � The request is for

an external website

Webserver ROOT directory:

All requests for a local file must be solved by
looking for the files in the ./pages/ folder and
its subfolders.

Task 3 – HTTP 1.1 Request – Testing
Listen Threads Request Prepare the

response
Send the
response

Proxy
requests Rewrite links KeepAlive

connections SIGINT

� How do I know if I correctly receive the requests?
� Have your thread printing on screen everything it reads
� Launch your proxy
� Open a web browser and open the address:

� http://<hostname>:<port#>� http://<hostname>:<port#>

� Your server should print something that looks like the
example in the previous slides

� How do I know the hostname of the machine I’m
running my proxy on?
� Simply run “hostname” from a terminal

Task 4 – HTTP 1.1 Response
Listen Threads Request Prepare the

response
Send the
response

Proxy
requests Rewrite links KeepAlive

connections SIGINT

� If the request can be satisfied the response starts
with:

GET /index.html HTTP/1.1

HTTP/1.1 200 OK
Server: CS/241

� Load the file in a char*, have its length ready too
getResponseString(char *sContentType, void *vptrCon tent,

size_t iContentLength)

Server: CS/241
MIME-version: 1.0
Content-type: text/html
Content-Length: 1147

text/html
text/css
image/png
image/jpeg

Task 4 – HTTP 1.1 Response
Listen Threads Request Prepare the

response
Send the
response

Proxy
requests Rewrite links KeepAlive

connections SIGINT

� Example of a response for a JPEG image

GET images/lena.jpg

HTTP/1.1 200 OK
Server: CS/241Server: CS/241
MIME-version: 1.0
Content-type: image/jpeg
Content-Length: 84360

Task 4 – HTTP 1.1 Response
Listen Threads Request Prepare the

response
Send the
response

Proxy
requests Rewrite links KeepAlive

connections SIGINT

� If the file does not exist and the path does not start with /proxy/:
getFileNotFoundResponseString()

Returns the complete response below (in white)

GET /notafile.html HTTP/1.1

HTTP/1.1 404 Not Found
Server: CS/241
Connection: close
Content-Length: 300

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict //EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd" ><html
xmlns="http://www.w3.org/1999/xhtml"><head><title>H TTP/404
File Not Found</title></head><body><h1>Not Found</h 1><div>Your
requested file was not found on the
server.</div></body></html>

Task 4 – HTTP 1.1 Response
Listen Threads Request Prepare the

response
Send the
response

Proxy
requests Rewrite links KeepAlive

connections SIGINT

� If the request is not a GET request:
getNotImplementedResponseString()

Returns the complete response below (in white)

NOTAREQUEST

HTTP/1.1 501 Not Implemented
Server: CS/241
Connection: close
Content-Length: 315

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict //EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd" ><html
xmlns="http://www.w3.org/1999/xhtml"><head><title>H TTP/501 Not
Implemented</title></head><body><h1>Not
Implemented</h1><div>Your requested cannot be under sood by the
server. Sorry.</div></body></html>Connection closed by foreign
host.

Task 5 – Answer the Request
Listen Threads Request Prepare the

response
Send the
response

Proxy
requests Rewrite links KeepAlive

connections SIGINT

� We have a response ready in a HTTPResponse
struct:

typedef struct __HTTPResponse{
void * vptrResponse ;void * vptrResponse ;
size_t length;

} HTTPResponse;

� Using send() send the content of vptrResponse back
� Send length bytes
� Don’t use strlen(), a buffer might not be NULL terminated

Task 5 – Answer the Request - Testing
Listen Threads Request Prepare the

response
Send the
response

Proxy
requests Rewrite links KeepAlive

connections SIGINT

� Using telnet:
� Try to send the requests (in green) in the previous examples and

verify if the HTTP response headers match with those presented
there

� If it works, then start using a browser and enjoy!
� Visit http://<hostname>:<port>/index.html and

follow the links on that page

Task 6 – Proxy!
Listen Threads Request Prepare the

response
Send the
response

Proxy
requests Rewrite links KeepAlive

connections SIGINT

� A proxy is a man in the middle that forwards the
requests to a remote server and the responses to
the local client:

Local client Remote server:Local client
(Browser)

Your PROXY

Remote server:
www.cs.uiuc.edu

GET
/index.html

GET
/proxy/www.cs.uiuc.edu/index.html

Task 6 – Proxy!
Listen Threads Request Prepare the

response
Send the
response

Proxy
requests Rewrite links KeepAlive

connections SIGINT

� A GET request for the proxy looks like:
GET /proxy/www.cs.uiuc.edu/class/sp10/cs241/index.html HTTP/1.1

� Split into:
/proxy � marks the proxy request� /proxy � marks the proxy request

� www.cs.uiuc.edu � the remote server we must connect to

� / class/sp10/cs241/index.html ���� the remote file
that must be retrieved

� Make an HTTP request to the remote server and forward
the response to the client

Task 6 – Proxy!
Listen Threads Request Prepare the

response
Send the
response

Proxy
requests Rewrite links KeepAlive

connections SIGINT

� A GET request for the proxy looks like:
GET /proxy/www.cs.uiuc.edu/class/sp10/cs241/index.ht ml HTTP/1.1

� Split into:What if the remote server does not � Split into:
� /proxy � marks the proxy request
� www.cs.uiuc.edu � the remote server we must connect to
� /path_to_the_remote_file

� Make an HTTP request to the remote server and
forward the response to the client

What if the remote server does not
exist?

Just make sure that your proxy does not crash
(sending a 404 error message is not required but
it would be nice)

Task 6 – Proxy! - Testing
Listen Threads Request Prepare the

response
Send the
response

Proxy
requests Rewrite links KeepAlive

connections SIGINT

� We provide some html page in your mp6 folder. Check
webproxy.html

A Break: HTML tags

� An HTML page is a plain text file:
� Browsers print part of the text in their windows
� Part of it are interpreted as commands (tags)

� Some comong tags:Some comong tags:
� TEXT � the text is printed in bold font
� <i> TEXT </i> � the text is printed in italic
� <h1> TEXT </h1> � use the header1 style

A Break: HTML tags

� Some tags have pointers to other resources:

� TEXT :

� TEXT is a link

� If you click on TEXT the browser will fetch the url defined in the href=
propertyproperty

� The <a> tags have many properties, href is one of them. There can be
a variable number of properties in any order

� :
� The browser fetches the image pointed by someurl and displays it
� Here too, src might be anywhere between

Task 7 – Rewriting the Links
Listen Threads Request Prepare the

response
Send the
response

Proxy
requests Rewrite links KeepAlive

connections SIGINT

� Why do we need to rewrite links?
� When we make a request for a remote server we go

through the proxy

Local client Remote server:Local client
(Browser)

Your PROXY

Remote server:
www.cs.uiuc.edu

GET
/index.html

GET
/proxy/www.cs.uiuc.edu/index.html

Task 7 – Rewriting the Links
Listen Threads Request Prepare the

response
Send the
response

Proxy
requests Rewrite links KeepAlive

connections SIGINT

� Why do we need to rewrite links?
� What if the html file we retrieve has some link to

other pages?

Local client Remote server:Local client
(Browser)

Your PROXY

Remote server:
www.cs.uiuc.edu

Task 7 – Rewriting the Links
Listen Threads Request Prepare the

response
Send the
response

Proxy
requests Rewrite links KeepAlive

connections SIGINT

� Clicking on the link we would skip the proxy!!!

Local client Remote server:

Remote server:
www.irs.govGET /

Local client
(Browser)

Your PROXY

Remote server:
www.cs.uiuc.edu

Task 7 – Rewriting the Links
Listen Threads Request Prepare the

response
Send the
response

Proxy
requests Rewrite links KeepAlive

connections SIGINT

� If instead we rewrite the link:

Local client Remote server:

Remote server:
www.irs.gov

Local client
(Browser)

Your PROXY

Remote server:
www.cs.uiuc.edu

Task 7 – Rewriting the Links
Listen Threads Request Prepare the

response
Send the
response

Proxy
requests Rewrite links KeepAlive

connections SIGINT

� The second request goes to the proxy as well!

Local client Remote server:

Remote server:
www.irs.gov

Local client
(Browser)

Your PROXY

Remote server:
www.cs.uiuc.edu

GET
/proxy/www.irs.gov

GET /

Task 7 – Rewriting the Links
Listen Threads Request Prepare the

response
Send the
response

Proxy
requests Rewrite links KeepAlive

connections SIGINT

� Rewrite:
� <a […] href=“URL”> � hyperlinks to other pages
� � images to be displayed on the page

� When answering to a request for /proxy/host1/file.html:� When answering to a request for /proxy/host1/file.html:

� Rewrite only Absolute links:
� http://newhost/path � /proxy/newhost/path

� /absolute path � /proxy/host1/absolutepath

� Do not rewrite relative links:
� Path without leading “/”

Task 7 – Rewriting the Links - Testing
Listen Threads Request Prepare the

response
Send the
response

Proxy
requests Rewrite links KeepAlive

connections SIGINT

� Check the source code of the pages that you visit
from webproxy.html, they should have been
rewritten

In most browsers, if you move your mouse over a � In most browsers, if you move your mouse over a
link you can see in the status bar what that link
points to

Task 8 – Keepalive Connections
Listen Threads Request Prepare the

response
Send the
response

Proxy
requests Rewrite links KeepAlive

connections SIGINT

� If the browser request had the line:
� Connection: close

� After your thread has server the request, close the socket
and return

� Connection: keep - alive� Connection: keep - alive

� After your thread has served the request, call recv() again
and wait for a new request

� The browser could also close the file descriptor later, in
this case recv() returns 0

Task 9 – SIGINT
Listen Threads Request Prepare the

response
Send the
response

Proxy
requests Rewrite links KeepAlive

connections SIGINT

� Write a SIGINT handler
� To send it to your proxy hit CTRL-C in the console where

proxy is running.

� The handler should initiate a process that frees all the � The handler should initiate a process that frees all the
memory and stop waiting for incoming connections

� Once all threads currently serving a request are done,
your program should exit

You are Done!
Listen Threads Request Prepare the

response
Send the
response

Proxy
requests Rewrite links KeepAlive

connections SIGINT

� That’s all, your proxy should be up and running

� Use the local pages that we provide in your MP � Use the local pages that we provide in your MP
folder to test your proxy

� Those pages contain a lot of different links that
should test most (but not all!) possible cases. Make
your own!

