
MP5 – Overview

The Assignment

• In this Mp you will be working on several IPC

techniques

• The final goal is to implement a multi-process

statistics collection toolstatistics collection tool

• Multiple files can be analyzed CONCURRENTLY

• Each file is analyzed by multiple processes

Map - Reduce

• An algorithm used in many contexts (Google!)

for analyzing huge datasets in few instants

• Based on a simple divide-and-conquer

approachapproach

• Chunks are analyzed by parallel processes

Closer Look at The Assignment

Message 1

Message 2

Message 3

Message 4

Message 5

Message 6

Message 7

Closer Look at The Assignment

Message 1

Message 2

Message 3

Message 4

Message 5

Message 6

Message 7

Analyze Print Results

Closer Look at The Assignment

Message 1

Message 2

Message 3

Map

Message 4

Message 5

Message 6

Message 7

Reduce

Map

Print

Results

Closer Look at The Assignment

Message 1

Message 2

Message 3

Map

If we have multiple processors (and Message 4

Message 5

Message 6

Message 7

Reduce

Map

Print

Results

If we have multiple processors (and

distributed files) this can improve

performances

Why IPC?

• Memory of different processes is independent

• Need for a way of sharing information among

different processesdifferent processes

• Need for synchronization among processes

The Processes Hierarchy

MainMonitor

�Two-way handshake using SIGNALS

�Shared Memory:

�Semaphores�Semaphores

�Filename to be analyzed

�Pipe name

�Named Pipe

�Monitor reads

�Main writes the results

Two-Way Handshake

MainMonitor

1) Start MAIN and get its PID

2) Create a shared memory segment

3) Wait for a USR1 Signal

4) Attach the shared memory segment

1) Start MAIN and get its PID

2) Create a shared memory segment

3) Wait for a Signal

4) Attach the shared memory segment 4) Attach the shared memory segment

5) Initializes the Semaphores

6) Write MONITOR PID in shared mem

7) Send USR1 to MAIN

8) Wait for a USR1 Signal

9) Prepare and open a named pipe

10) Save the filename to shmem

11) Send USR1 to MONITOR

12) Open the pipe for reading

4) Attach the shared memory segment

5) Initializes the Semaphores

6) Write MONITOR PID in shared mem

7) Send USR1 to MAIN

8) Wait for a USR1 Signal

9) Prepare and open a named pipe

10) Save the filename to shmem

11) Send USR1 to MONITOR

12) Open the pipe for reading

Monitor Controls Main

MainMonitor

for(i = 2; i < argc; i++){

sem_wait(&(shm_p->sem_slots);

sem_wait(&(shm_p->sem_mutex);

Don’t write if there’s a

filename already

sem_wait(&(shm_p->sem_mutex);

strcpy(shm_p->filename, argv[i]);

printf("MONITOR %d has set a new file %s\n", getpid(), argv[i]);

sem_post(&(shm_p->sem_mutex));

sem_post(&(shm_p->sem_resources));

}

kill(main_process_pid, SIGUSR2);

There’s a new filename

available

Done with all files

Processing a File

MainMonitor

WorkerWorker

Memory mapped file

WorkerWorker

1) Prepare a file to store the results

2) Fork a worker for each file

3) Map in memory the file in both processes

4) Wait for WORKER to finish

5) Send results to Monitor through pipe

Processing a File

MainMonitor

WorkerWorker WorkerWorker

1) Prepare a file to store the results

2) Fork a worker for each file

3) Map in memory the file in both processes

4) Wait for WORKER to finish

5) Send results to Monitor through pipe

Remember that when you fork() you create a copy of all your memory

until now

DO NOT BLOCK!!!

Map-Reduce

MainMonitor

WorkerWorker

1) Open text file

2) Start NUM_MAPS MAP processes

Use NUM_MAPS!

Memory mapped file

WorkerWorker

MapMapMap Map

3) Each MAP analyzes an equal amount of

lines (except the last ones that might

analyze less)

4) WORKER waits for all the MAPS to finish

5) WORKER combines the results

6) WORKER writes results on the memory

mapped file shared with MAIN

Memory

mapped file

Mbox Files
H

N

N

N

N

N

N

N

N

N

N

N

N

From - Tue Mar 9 19:29:41 2010
X-Mozilla-Status: 0001

X-Mozilla-Status2: 00000000

Path: dcs-news1.cs.illinois.edu!not-for-mail

From: "[TA] Wade Fagen" <cs241help-sp10@cs.illinois .edu>

Newsgroups: class.sp10.cs241

Subject: Re: Anyone get mp1 grades?

Date: Mon, 15 Feb 2010 02:05:41 -0600
Organization: Department of Computer Science, Unive rsity of Illinois

Lines: 4
Sender: wfagen2@gng0159.urh.uiuc.edu

Message - ID: <hlav9v$4dk$1@dcs - news1.cs.illinois.edu>
N

N

N

N

N

N

N

N

N

N

N

B

M

M

M

M

Message - ID: <hlav9v$4dk$1@dcs - news1.cs.illinois.edu>

References: <hl9ior$i3l$1@dcs-news1.cs.illinois.edu > <hl9j5sieo1@dcs-news1.cs.illinois.edu>

<hl9j80igf1@dcs-news1.cs.illinois.edu> <hl9lbk$kr 0$1@dcs-news1.cs.illinois.edu>

NNTP-Posting-Host: gng0159.urh.uiuc.edu

Mime-Version: 1.0

Content-Type: text/plain; charset=ISO-8859-1; forma t=flowed

Content-Transfer-Encoding: 7bit

X-Trace: dcs-news1.cs.illinois.edu 1266221183 4532 130.126.80.68 (15 Feb 2010 08:06:23 GMT)

X-Complaints-To: abuse@cs.illinois.edu

NNTP-Posting-Date: Mon, 15 Feb 2010 08:06:23 +0000 (UTC)

User-Agent: Thunderbird 2.0.0.23 (Windows/20090812)

In-Reply-To: <hl9lbk$kr0$1@dcs-news1.cs.illinois.ed u>

Xref: dcs-news1.cs.illinois.edu class.sp10.cs241:76 0

The autograder results are now in your svn. There'l l be an announcement

in the announce newsgroup in just a minute.

- wade

Things You Might Want To Know - Signals

struct sigaction usr1_action;
usr1_action.sa_handler = usr1_handler;
sigemptyset (&usr1_action.sa_mask);
usr1_action.sa_flags = 0;
sigaction(SIGUSR1, &usr1_action, NULL);

SIGCHLD, generally ignored, is signaled to the parent when a • SIGCHLD, generally ignored, is signaled to the parent when a
process exits

• When SIGCHLD is signaled, the process is a zombie, waiting
for a waitpid() call from the parent.

• Signals are not reliable

– If more then one (of same type) arrives at the same time, the handler
might be called only once

Things You Might Want To Know - Signals

• When forking a new process you might need to change the

way the new process handles signals. You can revert to the

default handler with:

struct sigaction chld_action;
chld_action.sa_handler = SIG_DFL;
sigemptyset (&chld_action.sa_mask);
chld_action.sa_flags = 0;
sigaction(SIGCHLD, &chld_action, NULL);

Things You Might Want To Know –

Shared Memory

• The system allows only for a limited number of segments

• When you are done with the shared memory you MUST

remove the mapped segment

shmctl(shmid, IPC_RMID, (struct shmid_ds *) NULL

• This just MARKS the memory to be destroyed, it will happen

only when the last process detaches it

Things You Might Want To Know –

Memory mapped files

• Reading and writing to a file as if it was a memory location

• Don’t have to worry about write cache and delays

int mmappedfile = open(mmapfilename,O_RDWR|O_CREAT,06 66);

char* data = mmap((caddr_t)0, size, PROT_READ|PROT_ WRITE,
MAP_SHARED,mmappedfile ,0);MAP_SHARED,mmappedfile ,0);

data[0] = ‘\0’;

File

Memory

data

File

Things You Might Want To Know –

Memory mapped files

• Reading and writing to a file as if it was a memory location

• Don’t have to worry about write cache and delays

int mmappedfile = open(mmapfilename,O_RDWR|O_CREAT,06 66);

char* data = mmap((caddr_t)0, size, PROT_READ|PROT_ WRITE,
MAP_SHARED,mmappedfile ,0);MAP_SHARED,mmappedfile ,0);

data[0] = ‘\0’;

File

Memory

data

File

“size” only defines how much memory space is

addressed, but the file MUST be large enough, it

will not be populated automatically!

