Paging III

CS 241
Sept. 18, 2013
int subtract(int a, int *b) {
 int c = a - *b;
 return c;
}

int add(int a, int *b) {
 int c = a + *b;
 return c;
}

void main() {
 int a = 4;
 int *b = malloc(sizeof(int));
 *b = 7;
 int c = add(a, b);
 int d = subtract(c, b);
}
int subtract(int a, int *b) {
 int c = a - *b;
 return c;
}

int add(int a, int *b) {
 int c = a + *b;
 return c;
}

void main() {
 char *b = malloc(sizeof(int));
 *(b + 1000) = 9;
}
Segmentation Faults

- A “Seg Fault” occurs when an access is made to a virtual memory address that cannot be resolved.
x86 Page Table

• In x86:
 – Pages are 4 KB in size
 – Virtual Addresses are 32-bits
 – Each PTE is 4 B in size

• How large is the Page Table for each process?
Multi-Level Page Table

• **Solution**: Create multiple levels of tables to look up a physical memory address.
Multi-Level Page Tables

• Each virtual address can now be divided into (n+1) different pieces for an (n) level page table.
 – **Example:** Two Level Page Table:
 • First Level Page Number
 • Second Level Page Number
 • Page Offset
• Given
 – 32-bit Virtual Addresses
 – 4 KB Pages
 – 12-bit First Level Page Table Number

• What are the components of the address: 0x48503423