

1

Filesystems

Based on slides by Matt Welsh, Harvard

What is a file system?

 A file system provides a high-level

abstraction of a low-level storage device.

 HDDs

 Windows: FAT32, NTFS, etc

 Linux: ext4, JFFS2, etc

 CD/DVD-ROMs

 Flash drives (SSDs or USB-drives)

 Network file systems (eg: NFS)

 Distributed file systems (eg: GFS/GoogleFS)

 …

 2

What does a file system provide?

 General purpose file systems provide

hierarchical access to the data

 Windows: C:\Users\John\

 Linux: /usr/John/

 Specialized file systems may not provide

hierarchal access at all.

 Eg: record-oriented file systems

 Can find all files tagged with “foo”

 No hierarchal relationship between two entries

3

File system operations

 Basic features:

 Create an empty file or a directory

 Delete a file or a directory

 Read a file’s content

 Append content to a file (eg: first-time writes)

 (re)Write a file’s content

 4

File system operations

 Advanced features:

 Security (who can read? write?)

 Accounting and quotas – prevent your

classmates from hogging the disks

 Background file backup

 Indexing and search capabilities

 File versioning

 Encryption

 Automatic compression of infrequently-used

files

5

File storage

 How does a file system actually store a file?

 How do directories know what files they’re

storing?

 How do files even know their own name?

6

i-node based file systems

 Many modern file systems are index-based

file systems (i-node).

 We will focus on the UNIX-specific

implementation of i-nodes.

 Windows (NTFS) uses a similar structure.

7

In the beginning…

 To do anything with a storage device, it

must be formatted to a file system format.

 In an i-node based filing system, this

formatting allocates three regions of space:

8

In the beginning…

 Freshly after a reformat, the file system

contains exactly one directory:

 /

 Referred to as the “root” directory.

9

Directory i-node

 The “root” directory is identified by a

specifically positioned i-node in the file

system (eg: i-node #0).

 An i-node contains information about every

object on the disk (files, directories, links, or

anything else).

10

i-node structure

 i-nodes are made up of two main parts:

 Metadata:

 Information describing

the disk object.

 File Content Pointers:

 Disk pointers to the

storage of the actual

content of the disk

object.

11

Metadata

File Content

Pointers

i-node structure

 Every i-node contains the same metadata:

 i-node Number

 Size

 Object type

 Directory? File? Link?

 Timestamps

 Creation / Modification /

Access Times

 Security information

 Link count

 NOT its name!

12

Metadata

File Content

Pointers

i-node structure

 If the i-node type is a directory, the content

section of the i-node describes a “directory

file”.

 A “directory file” is simply a list:

 The name of all the objects contained in the

current directory (subdirectories, files, etc).

 The i-node number of each of the objects.

 Eg:

 dir1 13

 file1 34
13

Pathname resolution

 To look up a pathname “/etc/passwd”, start at root

directory and walk down chain of inodes...

14

i-node structure

 The second part of every i-node consists of

how we access our data.

 Four types of pointers:

 Direct

 Single-indirect

 Double-indirect

 Triple-indirect

15

File Content

Pointers

Metadata

Direct i-node entries

 Direct pointers point directly to a block on

disk and are always used before any

indirect pointers are used.

 If the size of each disk block was 4 KB and

there was 10 direct pointers, the first (10 * 4KB)

of data would be stored via direct pointers.

 +Efficient access

 -Not very scalable

16

Single-indirect i-node entries

 Instead of pointing directly to the data,

single-indirect point to a disk block that is

filled with direct pointers.

 Disk blocks: 4 KB

 Disk pointer size: 4 B

 How much could be stored via one single-

indirect pointer in an i-node?

17

Double-indirect i-node entries

 Following the same pattern, double-indirect

entries point to a disk block full of single-

indirect pointers.

 How much could be stored via one double-

indirect pointer in an i-node?

18

i-node pointers overview

19

Stupid directory tricks

 Directories map filenames to inode numbers. What does this imply?

 We can create multiple pointers to the same inode in different

directories

 Or even the same directory with different filenames

 In UNIX this is called a “hard link” and can be done using “ln”

bash$ ls -i /home/foo

287663 /home/foo (This is the inode number of “foo”)

bash$ ln /home/foo /tmp/foo

bash$ ls -i /home/foo /tmp/foo

287663 /home/foo

287663 /tmp/foo

 “/home/foo” and “/tmp/foo” now refer to the same file on disk

 Not a copy! You will always see identical data no matter which filename you

use to read or write the file.

 Note: This is not the same as a “symbolic link”, which only links one

filename to another.
20

21

Disks

Based on slides by Matt Welsh, Harvard

22

23

24

Physical disks

 File systems are an abstraction above a

physical disk device.

 HDDs (eg: magnetic platters)

 SSDs (eg: flash/NAND memory)

 SANs (“Storage Area Networks”)

 …

25

