

1

Filesystems

Based on slides by Matt Welsh, Harvard

What is a file system?

 A file system provides a high-level

abstraction of a low-level storage device.

 HDDs

 Windows: FAT32, NTFS, etc

 Linux: ext4, JFFS2, etc

 CD/DVD-ROMs

 Flash drives (SSDs or USB-drives)

 Network file systems (eg: NFS)

 Distributed file systems (eg: GFS/GoogleFS)

 …

 2

What does a file system provide?

 General purpose file systems provide

hierarchical access to the data

 Windows: C:\Users\John\

 Linux: /usr/John/

 Specialized file systems may not provide

hierarchal access at all.

 Eg: record-oriented file systems

 Can find all files tagged with “foo”

 No hierarchal relationship between two entries

3

File system operations

 Basic features:

 Create an empty file or a directory

 Delete a file or a directory

 Read a file’s content

 Append content to a file (eg: first-time writes)

 (re)Write a file’s content

 4

File system operations

 Advanced features:

 Security (who can read? write?)

 Accounting and quotas – prevent your

classmates from hogging the disks

 Background file backup

 Indexing and search capabilities

 File versioning

 Encryption

 Automatic compression of infrequently-used

files

5

File storage

 How does a file system actually store a file?

 How do directories know what files they’re

storing?

 How do files even know their own name?

6

i-node based file systems

 Many modern file systems are index-based

file systems (i-node).

 We will focus on the UNIX-specific

implementation of i-nodes.

 Windows (NTFS) uses a similar structure.

7

In the beginning…

 To do anything with a storage device, it

must be formatted to a file system format.

 In an i-node based filing system, this

formatting allocates three regions of space:

8

In the beginning…

 Freshly after a reformat, the file system

contains exactly one directory:

 /

 Referred to as the “root” directory.

9

Directory i-node

 The “root” directory is identified by a

specifically positioned i-node in the file

system (eg: i-node #0).

 An i-node contains information about every

object on the disk (files, directories, links, or

anything else).

10

i-node structure

 i-nodes are made up of two main parts:

 Metadata:

 Information describing

the disk object.

 File Content Pointers:

 Disk pointers to the

storage of the actual

content of the disk

object.

11

Metadata

File Content

Pointers

i-node structure

 Every i-node contains the same metadata:

 i-node Number

 Size

 Object type

 Directory? File? Link?

 Timestamps

 Creation / Modification /

Access Times

 Security information

 Link count

 NOT its name!

12

Metadata

File Content

Pointers

i-node structure

 If the i-node type is a directory, the content

section of the i-node describes a “directory

file”.

 A “directory file” is simply a list:

 The name of all the objects contained in the

current directory (subdirectories, files, etc).

 The i-node number of each of the objects.

 Eg:

 dir1 13

 file1 34
13

Pathname resolution

 To look up a pathname “/etc/passwd”, start at root

directory and walk down chain of inodes...

14

i-node structure

 The second part of every i-node consists of

how we access our data.

 Four types of pointers:

 Direct

 Single-indirect

 Double-indirect

 Triple-indirect

15

File Content

Pointers

Metadata

Direct i-node entries

 Direct pointers point directly to a block on

disk and are always used before any

indirect pointers are used.

 If the size of each disk block was 4 KB and

there was 10 direct pointers, the first (10 * 4KB)

of data would be stored via direct pointers.

 +Efficient access

 -Not very scalable

16

Single-indirect i-node entries

 Instead of pointing directly to the data,

single-indirect point to a disk block that is

filled with direct pointers.

 Disk blocks: 4 KB

 Disk pointer size: 4 B

 How much could be stored via one single-

indirect pointer in an i-node?

17

Double-indirect i-node entries

 Following the same pattern, double-indirect

entries point to a disk block full of single-

indirect pointers.

 How much could be stored via one double-

indirect pointer in an i-node?

18

i-node pointers overview

19

Stupid directory tricks

 Directories map filenames to inode numbers. What does this imply?

 We can create multiple pointers to the same inode in different

directories

 Or even the same directory with different filenames

 In UNIX this is called a “hard link” and can be done using “ln”

bash$ ls -i /home/foo

287663 /home/foo (This is the inode number of “foo”)

bash$ ln /home/foo /tmp/foo

bash$ ls -i /home/foo /tmp/foo

287663 /home/foo

287663 /tmp/foo

 “/home/foo” and “/tmp/foo” now refer to the same file on disk

 Not a copy! You will always see identical data no matter which filename you

use to read or write the file.

 Note: This is not the same as a “symbolic link”, which only links one

filename to another.
20

21

Disks

Based on slides by Matt Welsh, Harvard

22

23

24

Physical disks

 File systems are an abstraction above a

physical disk device.

 HDDs (eg: magnetic platters)

 SSDs (eg: flash/NAND memory)

 SANs (“Storage Area Networks”)

 …

25

