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Introduction to Unix Network 
Programming 

Reference: Stevens Unix 
Network Programming  
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Network Programming 

  Key Components: 
  Internet protocols  

  IP, TCP, UDP, etc 
  Sockets  

  API - application programming interface 

  Why focus on the Internet? 
  Internet Protocol (IP)  

  IP is standard 
  allows a common namespace across most of Internet 
  reduces number of translations, which incur overhead 

  Sockets 
   reasonably simple and elegant, Unix interface 



Network Programming with 
Sockets 

  Socket 
  Host-local, application-created, OS-controlled 

Application process can both send and receive 
messages to/from another application process 

  Sockets API 
  A transport layer service interface 

  Introduced in 1981 by BSD 4.1 
  Implemented as library and/or system calls 
  Similar interfaces to TCP and UDP 
  Also interface to IP (for super-user); “raw sockets” 
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Beej’s Guide 

  How-to guide on network programming 
using Internet sockets, or "sockets 
programming" 
 http://beej.us/guide/bgnet/ 
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Outline 

  Client-Sever Model 
  TCP Connection 
  UDP Services 
  Sockets API 
  Example 



Client-Server Model 

  Asymmetric Communication 
  Client sends requests 
  Server sends replies 

  Server/Daemon 
  Well-known name 
  Waits for contact 
  Processes requests, sends 

replies 

  Client 
  Initiates contact 
  Waits for response 
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TCP Connections 

  Transmission Control Protocol (TCP) 
Service 
  OSI Transport Layer 
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TCP Connections 

  Transmission Control Protocol (TCP) 
Service 
  OSI Transport Layer 
  Service Model 

  Byte stream (interpreted by application) 
  16-bit port space allows multiple connections on a 

single host 
  Connection-oriented 

  Set up connection before communicating 
  Tear down connection when done 
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TCP Service 

  Reliable Data Transfer 
  Guaranteed delivery 
  Exactly once if no 

catastrophic failures  
  Sequenced Data Transfer 

  In-order delivery 
  Regulated Data Flow 

  Monitors network and 
adjusts transmission 
appropriately 

  Data Transmission 
  Full-Duplex byte stream 
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  Telephone Call 
  Guaranteed delivery 
  In-order delivery 
  Connection-oriented  
  Setup connection followed 

by conversation 



UDP Services 

  User Datagram Protocol Service 
  OSI Transport Layer 
  Provides a thin layer over IP 
  16-bit port space (distinct from TCP 

ports) allows multiple recipients on a 
single host 
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UDP Services 

  Unit of Transfer 
  Datagram (variable length 

packet) 
  Unreliable 

  No guaranteed delivery 
  Drops packets silently 

  Unordered 
  No guarantee of 

maintained order of 
delivery 

  Unlimited Transmission 
  No flow control 
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  Postal Mail 
  Single mailbox to receive 

all letters 
  Unreliable 
  Not necessarily in-order 
  Letters sent independently          
  Must address each reply 



Choose between TCP and 
UDP for each of these apps 

  File downloads (e.g., Web) 
  Sensor readings 
  Robot control 
  Nanny cam 
  Peer-to-peer video distribution 
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Addresses and Data 

  Goal: naming for machines on the Internet 
  Internet domain names 

  Human readable 
  Variable length 
  Ex: sal.cs.uiuc.edu 

  IP addresses 
  Each attachment point on Internet is given unique address 
  Easily handled by routers/computers 
  Fixed length 
  Somewhat geographical 
  Ex: 128.174.252.217 
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Byte Ordering 

  Big Endian vs. Little Endian 
  Little Endian (Intel, Arm): 

  Least significant byte of word is stored in the lowest 
memory address 

  Big Endian (Sun, SGI, HP): 
  Most significant byte of word is stored in the lowest 

memory address 

  Example: 128.2.194.95 
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Byte Ordering 

  Big Endian vs. Little Endian 
  Little Endian (Intel, Arm): 

  Least significant byte of word is stored in the lowest 
memory address 

  Big Endian (Sun, SGI, HP): 
  Most significant byte of word is stored in the lowest 

memory address 

  Network Byte Order = Big Endian 
  Must be used for some data (i.e. IP Addresses) 

  For your app, be consistent 
  Key to transmitting binary data 
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Byte Ordering Functions 

  16- and 32-bit conversion functions (for platform 
independence) 

  Examples: 

int m, n; 
short int s,t; 

m = ntohl (n)   // net-to-host long (32-bit) translation 
s = ntohs (t)   // net-to-host short (16-bit) translation 
n = htonl (m)   // host-to-net long (32-bit) translation 
t = htons (s)   // host-to-net short (16-bit) translation 
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Reserved Ports 
Keyword         Decimal    Description                      
-------         -------    -----------                      
                  0/tcp    Reserved 
                  0/udp    Reserved 
tcpmux            1/tcp    TCP Port Service 
tcpmux            1/udp    TCP Port Service 
echo              7/tcp    Echo 
echo              7/udp    Echo 
systat           11/tcp    Active Users 
systat           11/udp    Active Users 
daytime          13/tcp    Daytime (RFC 867) 
daytime          13/udp    Daytime (RFC 867) 
qotd             17/tcp    Quote of the Day 
qotd             17/udp    Quote of the Day 
chargen          19/tcp    Character Generator 
chargen          19/udp    Character Generator 
ftp-data         20/tcp    File Transfer Data 
ftp-data         20/udp    File Transfer Data 
ftp              21/tcp    File Transfer Ctl 
ftp              21/udp    File Transfer Ctl 
ssh              22/tcp    SSH Remote Login 
ssh              22/udp    SSH Remote Login 
telnet           23/tcp    Telnet 
telnet           23/udp    Telnet 
smtp             25/tcp    Simple Mail Transfer 
smtp             25/udp    Simple Mail Transfer 

Keyword         Decimal    Description       
-------         -------    -----------  
time             37/tcp    Time 
time             37/udp    Time 
name             42/tcp    Host Name Server 
name             42/udp    Host Name Server 
nameserver       42/tcp    Host Name Server 
nameserver       42/udp    Host Name Server 
nicname          43/tcp    Who Is 
nicname          43/udp    Who Is 
domain           53/tcp    Domain Name Server 
domain           53/udp    Domain Name Server 
whois++          63/tcp    whois++ 
whois++          63/udp    whois++ 
gopher           70/tcp    Gopher 
gopher           70/udp    Gopher 
finger           79/tcp    Finger 
finger           79/udp    Finger 
http             80/tcp    World Wide Web HTTP 
http             80/udp    World Wide Web HTTP 
www              80/tcp    World Wide Web HTTP 
www              80/udp    World Wide Web HTTP 
www-http         80/tcp    World Wide Web HTTP 
www-http         80/udp    World Wide Web HTTP 
kerberos         88/tcp    Kerberos 
kerberos         88/udp    Kerberos 



Socket interface 

  A simplified API for accessing sockets 
  Similar to the interface from Java sockets 
  Function calls not found in Unix systems 

  But do convey concepts 

  Will go over the gory details in disc. 

  Programming questions on final will be 
at this level of abstraction 
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Basic Unix Concepts 

  Input/Output – I/O 
  Per-process table of I/O channels 
  Table entries describe files, sockets, devices, pipes, etc. 
  Unifies I/O interface 
  Table entry/index into table called “file descriptor” 

  Error Model 
  Return value 

  0 on success, num bytes for file descriptors 
  -1 on failure 
  NULL on failure for routines returning pointers 

  errno variable 



TCP Connection Example 
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TCP Connection Example 
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Socket TCP client 

int NewConnection(char *inetAddr, !
                  int port)!

inetAddr – DNS name (“google.com”)!
port – TCP port of server (e.g., 80)!

Returns a file descriptor for new 
socket!
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NewConnection behind the 
scenes 

  Create a new socket file descriptor 
  Resolve hostname into IP addr 
  Connect to server 
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Read/write 

int read(int sock, uchar *buf, uint len) 
int write(int sock, uchar *buf, uint len) 

  buf – where data is stored 
  len – max bytes to read/write  
  returns num bytes read/write, 0 when 

socket closed, -1 on error 
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Read/write 

  You should assume that read/write will 
process less data than you give it for 
sockets 
  Can play a little fast and loose with files, 

not with sockets 
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Closing connection 

close(int sock) 

  sends any buffered bytes 

  disables further reads/writes on socket 

  notifies remote host 
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Socket TCP server 

  int NewServerSocket(int port) 
  Port – local port to use for server 
  Returns socket file descriptor 
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NewServerSocket 

  Create a new socket fd 
  “Bind” to a local port 
  Setup a listen queue 

  Way of queuing up new client 
connections 
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Accept 

  int accept(int serverSockFd) 
  Accept new connections on server sock 
  Returns a new sock fd when client makes 

new connection 

  That new sock fd is different from 
serverSockFd and used for client comm. 
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TCP Connection Example 
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Client 

#define BUF_SIZE 4096!
char msg[] = “hello”;!
char buffer[BUF_SIZE];!
int ret, bytesWritten, bytesRead;!
int len = strlen(msg) + 1;!
int sock;!
int bufSize = BUF_SIZE;!

sock = NewConnection(“localhost”, 8080);!
assert(sock >= 0);!
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Client 

while(bytesWritten < len) {!
    ret = write(sock, msg + bytesWritten, !
                len – bytesWritten);!
    assert(ret > 0);!
    bytesWritten += ret;!
}!

while((ret = read(sock, buffer+bytesRead, !
                  bufSize – bytesRead)) > 0) {!
    bytesRead += ret;!
}!
assert(ret == 0);!
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Server 

#define BUF_SIZE 4096!
char msg[] = “world”;!
char buffer[BUF_SIZE];!
int ret, bytesWritten, bytesRead;!
int len = strlen(msg) + 1;!
int servSock, cliSock;!
int bufSize = BUF_SIZE;!

servSock = NewServerSocket(8080);!
assert(servSock >= 0);!

cliSock = accept(servSock);!
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Server 

while((ret = read(cliSock, buffer+bytesRead, !
                  bufSize – bytesRead)) > 0) {!
    bytesRead += ret;!

! if(buffer[bytesRead-1] == ‘\0’) break;!
}!
assert(ret > 0);!

while(bytesWritten < len) {!
    ret = write(cliSock, msg + bytesWritten, !
                len – bytesWritten);!
    assert(ret > 0);!
    bytesWritten += ret;!
}!
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UDP Connection Example 
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