
CS 241 Copyright ©: University of Illinois CS 241 Staff 1

Introduction to Unix Network
Programming

Reference: Stevens Unix
Network Programming

CS 241 Copyright ©: University of Illinois CS 241 Staff 2

Network Programming

  Key Components:
  Internet protocols

  IP, TCP, UDP, etc
  Sockets

  API - application programming interface

  Why focus on the Internet?
  Internet Protocol (IP)

  IP is standard
  allows a common namespace across most of Internet
  reduces number of translations, which incur overhead

  Sockets
  reasonably simple and elegant, Unix interface

Network Programming with
Sockets

  Socket
  Host-local, application-created, OS-controlled

Application process can both send and receive
messages to/from another application process

  Sockets API
  A transport layer service interface

  Introduced in 1981 by BSD 4.1
  Implemented as library and/or system calls
  Similar interfaces to TCP and UDP
  Also interface to IP (for super-user); “raw sockets”

CS 241 Copyright ©: University of Illinois CS 241 Staff 3

Beej’s Guide

  How-to guide on network programming
using Internet sockets, or "sockets
programming"
 http://beej.us/guide/bgnet/

CS 241 Copyright ©: University of Illinois CS 241 Staff 4

CS 241 Copyright ©: University of Illinois CS 241 Staff 5

Outline

  Client-Sever Model
  TCP Connection
  UDP Services
  Sockets API
  Example

Client-Server Model

  Asymmetric Communication
  Client sends requests
  Server sends replies

  Server/Daemon
  Well-known name
  Waits for contact
  Processes requests, sends

replies

  Client
  Initiates contact
  Waits for response

CS 241 Copyright ©: University of Illinois CS 241 Staff 6

Client

Server

Client

Client

Client

TCP Connections

  Transmission Control Protocol (TCP)
Service
  OSI Transport Layer

CS 241 Copyright ©: University of Illinois CS 241 Staff 7

process

TCP with
buffers,

variables

socket

controlled by
application
developer

controlled by
operating

system

host or
server

process

TCP with
buffers,

variables

socket

controlled by
application
developer

controlled by
operating
system

host or
server

internet

TCP Connections

  Transmission Control Protocol (TCP)
Service
  OSI Transport Layer
  Service Model

  Byte stream (interpreted by application)
  16-bit port space allows multiple connections on a

single host
  Connection-oriented

  Set up connection before communicating
  Tear down connection when done

CS 241 Copyright ©: University of Illinois CS 241 Staff 8

TCP Service

  Reliable Data Transfer
  Guaranteed delivery
  Exactly once if no

catastrophic failures
  Sequenced Data Transfer

  In-order delivery
  Regulated Data Flow

  Monitors network and
adjusts transmission
appropriately

  Data Transmission
  Full-Duplex byte stream

CS 241 Copyright ©: University of Illinois CS 241 Staff 9

  Telephone Call
  Guaranteed delivery
  In-order delivery
  Connection-oriented
  Setup connection followed

by conversation

UDP Services

  User Datagram Protocol Service
  OSI Transport Layer
  Provides a thin layer over IP
  16-bit port space (distinct from TCP

ports) allows multiple recipients on a
single host

CS 241 Copyright ©: University of Illinois CS 241 Staff 10

UDP Services

  Unit of Transfer
  Datagram (variable length

packet)
  Unreliable

  No guaranteed delivery
  Drops packets silently

  Unordered
  No guarantee of

maintained order of
delivery

  Unlimited Transmission
  No flow control

CS 241 Copyright ©: University of Illinois CS 241 Staff 11

  Postal Mail
  Single mailbox to receive

all letters
  Unreliable
  Not necessarily in-order
  Letters sent independently
  Must address each reply

Choose between TCP and
UDP for each of these apps

  File downloads (e.g., Web)
  Sensor readings
  Robot control
  Nanny cam
  Peer-to-peer video distribution

CS 241 Copyright ©: University of Illinois CS 241 Staff 12

Addresses and Data

  Goal: naming for machines on the Internet
  Internet domain names

  Human readable
  Variable length
  Ex: sal.cs.uiuc.edu

  IP addresses
  Each attachment point on Internet is given unique address
  Easily handled by routers/computers
  Fixed length
  Somewhat geographical
  Ex: 128.174.252.217

CS 241 Copyright ©: University of Illinois CS 241 Staff 13

Byte Ordering

  Big Endian vs. Little Endian
  Little Endian (Intel, Arm):

  Least significant byte of word is stored in the lowest
memory address

  Big Endian (Sun, SGI, HP):
  Most significant byte of word is stored in the lowest

memory address

  Example: 128.2.194.95

CS 241 Copyright ©: University of Illinois CS 241 Staff 14

128 2 194 95

95 194 2 128

Big Endian

Little Endian

Byte Ordering

  Big Endian vs. Little Endian
  Little Endian (Intel, Arm):

  Least significant byte of word is stored in the lowest
memory address

  Big Endian (Sun, SGI, HP):
  Most significant byte of word is stored in the lowest

memory address

  Network Byte Order = Big Endian
  Must be used for some data (i.e. IP Addresses)

  For your app, be consistent
  Key to transmitting binary data

CS 241 Copyright ©: University of Illinois CS 241 Staff 15

CS 241 Copyright ©: University of Illinois CS 241 Staff 16

Byte Ordering Functions

  16- and 32-bit conversion functions (for platform
independence)

  Examples:

int m, n;
short int s,t;

m = ntohl (n) // net-to-host long (32-bit) translation
s = ntohs (t) // net-to-host short (16-bit) translation
n = htonl (m) // host-to-net long (32-bit) translation
t = htons (s) // host-to-net short (16-bit) translation

CS 241 Copyright ©: University of Illinois CS 241 Staff 17

Reserved Ports
Keyword Decimal Description
------- ------- -----------
 0/tcp Reserved
 0/udp Reserved
tcpmux 1/tcp TCP Port Service
tcpmux 1/udp TCP Port Service
echo 7/tcp Echo
echo 7/udp Echo
systat 11/tcp Active Users
systat 11/udp Active Users
daytime 13/tcp Daytime (RFC 867)
daytime 13/udp Daytime (RFC 867)
qotd 17/tcp Quote of the Day
qotd 17/udp Quote of the Day
chargen 19/tcp Character Generator
chargen 19/udp Character Generator
ftp-data 20/tcp File Transfer Data
ftp-data 20/udp File Transfer Data
ftp 21/tcp File Transfer Ctl
ftp 21/udp File Transfer Ctl
ssh 22/tcp SSH Remote Login
ssh 22/udp SSH Remote Login
telnet 23/tcp Telnet
telnet 23/udp Telnet
smtp 25/tcp Simple Mail Transfer
smtp 25/udp Simple Mail Transfer

Keyword Decimal Description
------- ------- -----------
time 37/tcp Time
time 37/udp Time
name 42/tcp Host Name Server
name 42/udp Host Name Server
nameserver 42/tcp Host Name Server
nameserver 42/udp Host Name Server
nicname 43/tcp Who Is
nicname 43/udp Who Is
domain 53/tcp Domain Name Server
domain 53/udp Domain Name Server
whois++ 63/tcp whois++
whois++ 63/udp whois++
gopher 70/tcp Gopher
gopher 70/udp Gopher
finger 79/tcp Finger
finger 79/udp Finger
http 80/tcp World Wide Web HTTP
http 80/udp World Wide Web HTTP
www 80/tcp World Wide Web HTTP
www 80/udp World Wide Web HTTP
www-http 80/tcp World Wide Web HTTP
www-http 80/udp World Wide Web HTTP
kerberos 88/tcp Kerberos
kerberos 88/udp Kerberos

Socket interface

  A simplified API for accessing sockets
  Similar to the interface from Java sockets
  Function calls not found in Unix systems

  But do convey concepts

  Will go over the gory details in disc.

  Programming questions on final will be
at this level of abstraction

CS 241 Copyright ©: University of Illinois CS 241 Staff 19

CS 241 Copyright ©: University of Illinois CS 241 Staff 20

Basic Unix Concepts

  Input/Output – I/O
  Per-process table of I/O channels
  Table entries describe files, sockets, devices, pipes, etc.
  Unifies I/O interface
  Table entry/index into table called “file descriptor”

  Error Model
  Return value

  0 on success, num bytes for file descriptors
  -1 on failure
  NULL on failure for routines returning pointers

  errno variable

TCP Connection Example

CS 241 Copyright ©: University of Illinois CS 241 Staff 21

socket
socket

connect
bind
listen

accept write
read
write

read
close

close

client server

TCP Connection Example

CS 241 Copyright ©: University of Illinois CS 241 Staff 22

socket
socket

connect
bind
listen

accept write
read
write

read
close

close

client server

Socket TCP client

int NewConnection(char *inetAddr, !
 int port)!

inetAddr – DNS name (“google.com”)!
port – TCP port of server (e.g., 80)!

Returns a file descriptor for new
socket!

CS 241 Copyright ©: University of Illinois CS 241 Staff 23

NewConnection behind the
scenes

  Create a new socket file descriptor
  Resolve hostname into IP addr
  Connect to server

CS 241 Copyright ©: University of Illinois CS 241 Staff 24

Read/write

int read(int sock, uchar *buf, uint len)
int write(int sock, uchar *buf, uint len)

 buf – where data is stored
 len – max bytes to read/write
 returns num bytes read/write, 0 when

socket closed, -1 on error

CS 241 Copyright ©: University of Illinois CS 241 Staff 25

Read/write

  You should assume that read/write will
process less data than you give it for
sockets
  Can play a little fast and loose with files,

not with sockets

CS 241 Copyright ©: University of Illinois CS 241 Staff 26

Closing connection

close(int sock)

 sends any buffered bytes

 disables further reads/writes on socket

 notifies remote host

CS 241 Copyright ©: University of Illinois CS 241 Staff 27

Socket TCP server

  int NewServerSocket(int port)
  Port – local port to use for server
  Returns socket file descriptor

CS 241 Copyright ©: University of Illinois CS 241 Staff 28

NewServerSocket

  Create a new socket fd
  “Bind” to a local port
  Setup a listen queue

  Way of queuing up new client
connections

CS 241 Copyright ©: University of Illinois CS 241 Staff 29

Accept

  int accept(int serverSockFd)
  Accept new connections on server sock
  Returns a new sock fd when client makes

new connection

  That new sock fd is different from
serverSockFd and used for client comm.

CS 241 Copyright ©: University of Illinois CS 241 Staff 30

TCP Connection Example

CS 241 Copyright ©: University of Illinois CS 241 Staff 31

socket
socket

connect
bind
listen

accept write
read
write

read
close

close

client server

Client

#define BUF_SIZE 4096!
char msg[] = “hello”;!
char buffer[BUF_SIZE];!
int ret, bytesWritten, bytesRead;!
int len = strlen(msg) + 1;!
int sock;!
int bufSize = BUF_SIZE;!

sock = NewConnection(“localhost”, 8080);!
assert(sock >= 0);!

CS 241 Copyright ©: University of Illinois CS 241 Staff 32

Client

while(bytesWritten < len) {!
 ret = write(sock, msg + bytesWritten, !
 len – bytesWritten);!
 assert(ret > 0);!
 bytesWritten += ret;!
}!

while((ret = read(sock, buffer+bytesRead, !
 bufSize – bytesRead)) > 0) {!
 bytesRead += ret;!
}!
assert(ret == 0);!

CS 241 Copyright ©: University of Illinois CS 241 Staff 33

Server

#define BUF_SIZE 4096!
char msg[] = “world”;!
char buffer[BUF_SIZE];!
int ret, bytesWritten, bytesRead;!
int len = strlen(msg) + 1;!
int servSock, cliSock;!
int bufSize = BUF_SIZE;!

servSock = NewServerSocket(8080);!
assert(servSock >= 0);!

cliSock = accept(servSock);!

CS 241 Copyright ©: University of Illinois CS 241 Staff 34

Server

while((ret = read(cliSock, buffer+bytesRead, !
 bufSize – bytesRead)) > 0) {!
 bytesRead += ret;!

! if(buffer[bytesRead-1] == ‘\0’) break;!
}!
assert(ret > 0);!

while(bytesWritten < len) {!
 ret = write(cliSock, msg + bytesWritten, !
 len – bytesWritten);!
 assert(ret > 0);!
 bytesWritten += ret;!
}!

CS 241 Copyright ©: University of Illinois CS 241 Staff 35

UDP Connection Example

CS 241 Copyright ©: University of Illinois CS 241 Staff 36

client server

socket
socket

sendto
bind

recvfrom

sendto

recvfrom
close

