
CS 240
Computer
Systems

Week 7: Synchronization and Deadlock

CS 240, Spring 2021 - Week 7

Wade Fagen-Ulmschneider

The Need for Synchronization:

Recall, when we ended last week, we had multiple threads counting up

-- one by one -- and had various unexpected results when running the

code below:

threads/count.c

5
6
7
8
9
10
11
12
13
14
15
16

int ct = 0;

void *thread_start(void *ptr) {
int countTo = *((int *)ptr);

int i;
for (i = 0; i < countTo; i++) {
ct = ct + 1;

}

return NULL;
}

A __________________________ is any code that accesses a

shared resource that must be accessed only by a single thread at a

given time to function correctly.

Synchronization: Using Locks

The simplest way to protect a region of code from being accessed is

through the use of a ____________________:

pthread_mutex_init: Creates a new lock in the “unlocked” state.

pthread_mutex_lock:

● When the lock is unlocked, change the lock to the “locked”

state and advance to the next line of code.

● When the lock is locked, this function blocks execution until

the lock can be acquired.

pthread_mutex_unlock: Moves the lock to the “unlocked” state.

threads/count-with-lock.c

5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

25
26
27
28
29

30
31
32

33
34
35
36
…

pthread_mutex_t lock;
int ct = 0;

void *thread_start(void *ptr) {
int countTo = *((int *)ptr);

int i;
for (i = 0; i < countTo; i++) {
pthread_mutex_lock(&lock);
ct = ct + 1;
pthread_mutex_unlock(&lock);

}

return NULL;
}

int main(int argc, char *argv[]) {
// Parse Command Line:
if (argc != 3) {
printf("Usage: %s <countTo> <thread count>\n",

argv[0]);
return 1;

}

const int countTo = atoi(argv[1]);
if (countTo == 0) { printf("Valid `countTo` is

required.\n"); return 1; }

const int thread_ct = atoi(argv[2]);
if (thread_ct == 0) { printf("Valid thread count is

required.\n"); return 1; }

// Create Lock:
pthread_mutex_init(&lock, NULL);

[...code continues the same as last week...]

Q: What happens when we run this code now?

Q: What is the performance of this code vs. the code without the lock?

Critical Sections

We know that critical sections require exclusive access to a resource.

We also know locking a resource is computationally expensive.

However, are there other concerns?

The Dining Philosophers

Imagine five philosophers and five chopsticks at a circular table. Each

philosopher has two states: eating and thinking:

● When a philosopher is thinking, she holds no chopsticks.

● When a philosopher starts the process of eating, she must take

the chopstick to her left, then her right, and then begin eating.

Q: Using the strategy described above (take left, take right, then eat),

what happens over a long period of time?

threads/count-with-lock.c

5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

21
22

23
24
25

26
27

28
29
30
31
32
33

34
35
36
37
38
39

#define PHILOSOPHER_COUNT 5

pthread_mutex_t locks[PHILOSOPHER_COUNT];
int ct = 0;

void *philosopher_thread(void *ptr) {
int id = *((int *)ptr);

int left_chopstick_id = id;
int right_chopstick_id = (id + 1) % PHILOSOPHER_COUNT;

while (1) {
printf("%d is thinking...\n", id);

// Get left chopstick:
printf("%d is reaching for the left chopstick

(chopstick=%d)...\n", id, left_chopstick_id);
pthread_mutex_lock(&locks[left_chopstick_id]);
printf("%d has the left chopstick (chopstick=%d).\n",

id, left_chopstick_id);

// Get right chopstick:
printf("%d is reaching for the right chopstick

(chopstick=%d)...\n", id, right_chopstick_id);
pthread_mutex_lock(&locks[right_chopstick_id]);
printf("%d has the right chopstick

(chopstick=%d).\n", id, right_chopstick_id);

// Eat:
printf("%d is eating... 🍱🥢\n", id);

// Release chopsticks:
printf("%d is returning their chopsticks

(chopsticks: %d, %d)...\n", id, left_chopstick_id,
right_chopstick_id);

pthread_mutex_unlock(&locks[right_chopstick_id]);
pthread_mutex_unlock(&locks[left_chopstick_id]);

}

return NULL;
}

Q: What happens when we run this thread for all five philosophers?

Deadlock:

- Definition:

- Four necessary conditions of deadlock:

1)

2)

3)

4)

Solution #1:

Solution #2:

Solution #3:

Solution #4:

