CS 240 Week 6: Multiprogramming and Threads

Computer CS 240, Spring 2021 - Week 6
Systems Wade Fagen-Ulmschneider

From Hardware to Software: Moving to the OS!

Up until now, everything we have discussed has been focused on the
direct interaction with hardware. Today, we escape hardware to

explore controlling and using the hardware!

Operating System (OS): Apps

[1]: 0S
Hardware

[2]:

[3]:

Running a Program

A is an instance of a running program.

- NOT the binary source code; it’s an instance of it running.

A provides two key abstractions:

1. [Memory]:

2. [Execution]:

Pressing the Power Button

When you press the power button on ANY computing device, not
much is available:

e Your after being off (ex: does not
contain your Operating System, that’s on your disk!)

e Goals of a computer at boot:

To do this, almost all modern systems perform three tasks:

1. [POST]:

2. [Bootloader]:

3. [Process #1]:

Once one process exists, it can spawn new processes through the
fork() command. You can explore every process on a system:

e Linux command: ps

e ..options for all processes with details: ps -aef

Multiprogramming
On a modern computer, there are dozens of different processes
running simultaneously -- but only a few CPUs.

e In the period of microseconds, the OS rapidly switches
between all processes to allow each process to run on one
or more of the CPUs.

e When the OS swaps out one process from one CPU and allows
a new process to run, this is called a

Context Switching

What is required during a context switch?
[CPUI:

[Caches]:

[Page Table]:

...overall cost?

A Process’ Execution Unit: Threads
Each process contains one or more
concurrently with other threads:

that can run

[1]: Main Thread:

[2]: Uses for Additional Threads:

Threads vs. Processes

Threads with a Process Processes

Overhead

Context
Switching

Virtual
Memory

CPUs

Creating Threads in C
The pthread library is the POSIX thread library allowing you to create
additional threads beyond the main thread.

Creating a new thread is a complex call with four arguments:

int pthread_create(
pthread_t *thread, /* thread struct */
const pthread_attr_t *attr, /* usually NULL */
void *(*start_routine) (void *), /* start func */
void *arg /* thread start arg */

)i

The start_routine variable is a function pointer and requires the
argument to be a function with the prototype:

(void *ptr);

...you can use any name for the function name.

Example 1: Launching Fifteen Threads Example 2: Joining Threads

threads/fifteen.c threads/fifteen-join.c

1 (#include <stdio.h> 13 |int main(int argc, char *argv[]) {

2 |#include <pthread.h> 14 // Create threads:

3 [#include <stdlib.h> 15 int i;

4 16 pthread_t tid[num_threads];

5 |const int num_threads = 15; 17 for (1 = 0; i < num_threads; i++) {

6 18 int *val = malloc(sizeof(int));

7 | void *thread_start(void *ptr) { 19 *val = i;

8 int id = *((int *)ptr); 20 pthread_create(&tid[i], NULL,

9 printf("Thread %d running...\n", id); thread_start, (void *)val);
10 return NULL; 21 }

11|} 22

12 23 // Joining Threads

13 [int main(int argc, char *argv[]) { 24 for (i = 0; i < num_threads; i++) {

14 // Create threads: 25 pthread_join(tid[i], NULL);

15 int i; 26 }

16 pthread_t tid[num_threads]; 27

17 for (1 = 0; i < num_threads; i++) { 28 printf("Done!\n");

18 pthread_create(&tid[i], NULL, 29 return 0;

thread_start, (void *)&i); 30|}

19 }

20

21 printf("Done!\n"); In the above program, we use pthread_join. This call will block the
22 return 0; CPU from running the program further until the specified thread has
23 |} finished and returned.
Q1: What is the expected output of this program? Q4: What happens in this program?
Q2: What actually happens? Q5: Does the order vary each time we run it? What is happening?
Q3: What do we know about threads in C? Q6: What can we say about the relationship between “Done” and

“Thread %d running...“ lines?

threads/count.c
5|int ct = 0;
6
7 | void *thread_start(void *ptr) {
8 int countTo = *((int *)ptr);
9
10 int i;
11 for (1 = 0; i < countTo; i++) {
12 ct =ct + 1;
13 }
14
15 return NULL;
16 | }
17
18 |int main(int argc, char *argv[]) {
19 // Parse Command Line:
20 if (argc !'= 3) {
21 printf("Usage: %s <countTo> <thread count>\n",
argv[e]);
22 return 1;
23 }
24
25 const int countTo = atoi(argv[1]);
26 if (countTo == 0) { printf("Valid “countTo is
required.\n"); return 1; }
27
28 const int thread_ct = atoi(argv[2]);
29 if (thread_ct == 0) { printf("Valid thread count is
required.\n"); return 1; }
30
31 /! Create threads:
32 int i;
33 pthread_t tid[thread_ct];
34 for (1 = 0; i < thread_ct; i++) {
35 pthread_create(&tid[i], NULL,
thread_start, (void *)&countTo);
36 }
37
38 // Join threads:
39 for (1 = 0; i < thread_ct; i++) {
40 pthread_join(tid[i], NULL);
41 }
42
43 // Display result:
44 printf("Final Result: %d\n", ct);
45 return 0;
46 | }

Q7: What do we expect when we run this program?

Q8: What is the output of this program when it’s running as:
./count 100 2

Q9: What is the output of this program when it’s running as:
./count 100 16

Q10: What is the output of this program when it’s running as:
./count 10000000 2

Q11: What is the output of this program when it’s running as:
./count 10000000 16

Q12: What is going on???

