

Welcome to CS 240: Introduction to Computer Systems

Course Website: https://courses.engr.illinois.edu/cs240/

Description: Basics of computer systems. Number representations,

assembly/machine language, abstract models of processors

(fetch/execute, memory hierarchy), processes/process control, simple

memory management, file I/O and directories, network programming,

usage of cloud services. 3 credit hours.

Instructors:

 Prof. Wade Fagen-Ulmschneider <waf@>, Course Instructor

 Teaching Associate Professor of Computer Science, Grainger College of Engineering

 Natalia Ozymko <nozymko2@>, Lead Course Assistant

 Computer Science, Grainger College of Engineering

Coursework and Grading

A total of 1,000 points are available in CS 240, along with many

opportunities to earn extra credit. The points are broken down in the

following way:

● 200 points: Homeworks (10 × 20 points)

o Points over 200 are extra credit!

o Usually on PrairieLearn, but occasionally another platform

● 400 points: Open-book Midterm Exams (2 × 200 points)

o Midterm 1 Exam: Thursday, October 8, 2020

o Midterm 2 Exam: Thursday, November 19, 2020

● 250 points: Machine Projects (10 weeks × 25 points)

o 7-8 MPs, including short (1-week) and long (2-week) MPs

o Long MPs are worth 50 points, short MPs are worth 25 points

● 100 points: Final Project

o Multi-week Final Project, presented during finals weeks instead of

a final exam (no final exam!)

● 50 points: Participation

o If you regularly engage with the course, you’ll receive the full

points. I really want your feedback on how to build CS 240 to be

the best course possible and you to enjoy it! :)

Final Course Grades

Your final course grade is determined by the number of points you

earned during the semester:

We never curve individual exam or assignment scores; instead, if

necessary, we may lower the points required for each grade cutoff to

be lower than the stated cutoff. In no case will we raise the cutoff.

Foundations of Computer Systems

There are six major components to a computer, which we will refer to

as the “foundations” of a computer system:

[1]:

CS 240
Computer
Systems

#1: Introduction and C Programming

CS 240, Spring 2021 - Week 1

Wade Fagen-Ulmschneider

Points Grade Points Grade Points Grade

[1070, ∞) A+ [930, 1070) A [900, 930) A-

[870, 900) B+ [830, 870) B [800, 830) B-

[770, 800) C+ [730, 770) C [700, 730) C-

[670, 700) D+ [630, 670) D [600, 630) D-

 (600, 0] F

[2]:

[3]:

[4]:

[5]:

[6]:

System-level Abstractions

After covering the “foundations”, we will begin to abstract the entire

system as node and explore more complex topics:

[1]:

[2]:

[3]:

Representing Data: Binary

All data within a computer is _____________; either 0 or 1.

Converting between base-2 and base-10:

 1
2: ___________

10

 10
2: ___________

10

 11
2: ___________

10

 100
2: ___________

10

101 1000
2: ___________

10

Any value can be represented in binary by writing it in base-2:

 4
10: ___________

2

 7
10: ___________

2

 18
10: ___________

2

In C/C++, you can write a number in binary by prefixing the number

with 0b:
 11

10: ___________

 33
10: ___________

Bit Manipulation:

We can manipulate bits by binary operations:

 AND, & operator:

 OR, | operator:

 XOR, ^ operator:

 NOT, ! or ~ operator:

Bit Manipulation:

Representing Data: Hexadecimal

Binary data gets really long, really fast! The number of students

enrolled at University of Illinois is 0b1100011111111100 (!!).

- To represent binary data in a compact way, we often will use

hexadecimal -- or “base-16 -- denoted by the prefix 0x.

Hexadecimal Digits:

 11
10: 0x___________ 87

10: 0x___________

 34
10: 0x___________

 Hexadecimal is particularly useful as it ________________:

Orders of Magnitude

Bits are organized into 8-bit chunks called ______.

Bytes are organized into by orders of magnitude.

1. Historical Use of 10x:

4 KB on disk == ________ B

2. Historical Use of 2x:

4 KB in RAM == ________ B

Example: Downloading a 1 GiB file on a “1 gig” connection:

A B A & B A | B A ^ B !A
1100 1010

110011 11

101 010

University of Illinois student population in Fall 2019 (51,196):

0b 1100 0111 1111 1100

0x

Number of people following Taylor Swift on Twitter (87,042,176):

0b 101 0011 0000 0010 1000 1000 0000

0x

Prefix Magnitude Prefix Magnitude

kilo-, K- 103
kibi-, Ki-

mega-, M- mebi, Mi-

giga-, G- gibi-, Gi- 230

tera-, T- 1012
 tebi-, Ti- 240

Representing Letters: ASCII

Representing numbers is great -- but what about words? Can we

make sentences with binary data?

● Key Idea: Every letter is _____ binary bits.

(This means that every letter is _____ hex digits.)

● Global standard called the American Standard Code for

Information Interchange (ASCII) is a ___________

______________ for translating numbers to characters.

...and now we can form sentences!

Q: Are there going to be any issues with ASCII?

Representing Letters: Other Character Encodings

Since ASCII uses only 8 bits, we are limited to only 256 unique

characters. There’s far more than 256 characters -- and what about

EMOJIs?? 🎉

● Many other character encodings exist other than ASCII.

● The most widely used character encoding is known as

Unicode Transformation Format (8-bit) or ______.

UTF-8 uses a ___________-bit design where each character by be

any of the following:

Specifically the first four bits tell us about the number of bytes used to

encode the character:

For all single-byte characters, the ASCII character encoding is used.

This means ‘a’ is still 0x61. Unicode characters are represented by

U+ followed by the hex value, like U+61.

Example: ε (epsilon) is defined as U+03B5. How do we encode this?

Example: I received the following binary message encoded in UTF-8:

0100 1000 0110 1001 1111 0000 1001 1111 1000 1110 1000 1001

1. What is the hexadecimal representation of this message?

2. What is the character length of this message?

3. What does the message say?

...what technique did we just apply to find the Unicode character

code?

Finally, UTF-8 has seen universal design due to several brilliant

features:

ASCII Character Encoding Examples:

Binary Hex Char. Binary Hex Char.

0b0100 0001 0x41 A 0b0110 0001 0x61 a
0b0100 0010 0x42 B 0b0110 0010 0x62 b

 C c

 D d

0b0010 0100 0x24 $ 0b0111 1011 0x7b {

 Length Byte #1 Byte #2 Byte #3 Byte #4

1-byte 0___ ____

2-bytes: 110_ ____ 10__ ____

3-bytes: 1110 ____ 10__ ____ 10__ ____

4-bytes: 1111 0___ 10__ ____ 10__ ____ 10__ ____

