MIPS: register-to-register, three address

= MIPS is a register-to-register, or load/store, architecture
— destination and sources of instructions must all be registers
— special instructions to access main memory (later)

= MIPS uses three-address instructions for data manipulation
— each ALU instruction contains a destination and two sources

= For example, an addition instruction (a = b + c¢) has the form:

opeiation operands
add a, b, C

T I I

destination sources

MIPS register file

= MIPS processors have 32 registers, each of which holds a 32-bit value
— register addresses are 5 bits long

= More registers might seem better, but there is a limit to the goodness:

— more expensive: because of registers themselves, plus extra hardware
like muxes to select individual registers

— Instruction lengths may be affected 331/

D data
— Write

5
7L> D address

32 x 32 Register File

5 5
7L' A address B address 47L

A data B data

MIPS register names

= MIPS register names begin with a $. There are two naming conventions:
— by number:

$0 $1 $2 $31
— by (mostly) two-character names, such as:

$a0-%a3 $s0-$s7 $t0-$19 $sp $ra

= Not all of the registers are equivalent:
— e.g., register $0 or $zero always contains the value 0
— some have special uses, by convention ($sp holds “stack pointer”)

= You have to be a little careful in picking registers for your programs
— for now, stick to the registers $t0-$t9

Basic arithmetic and logic operations

= The basic integer arithmetic operations include the following:
add sub mul div
= And here are a few bitwise operations:
and or Xor nor
» Remember that these all require three register operands; for example:

add $t0, $t1, $t2 # $t0 = $t1 + P2
mul $s1, $s1, $al # $s1 = $s1 x $a0

Larger expressions

Complex arithmetic expressions may require multiple MIPS operations

Example: t0 = (t1 + t2) x (€3 - t4)

add $tO0, $t1, $t2 # $tO0 contains $tl1 + $t2
sub $t6, $t3, $t4 # temp value $t6 = $t3 - $t4
mul $tO0, $t0, $t6 # $t0 contains the final product

Temporary registers may be necessary, since each MIPS instructions can
access only two source registers and one destination

— in this example, we could re-use $t3 instead of introducing $t6
— must be careful not to modify registers that are needed again later

How are registers initialized?

Special MIPS instructions allow you to specify a signed constant, or
“Immediate” value, for the second source instead of a register

— e.g., here is the immediate add instruction, addi:

addi $t0, $t1, 4 # $t0 = $t1 + 4

Immediate operands can be used in conjunction with the $zero register
to write constants into registers:

addi $t0, $0, 4 # $t0

I
IR

Shorthand: 11 $t0, 4 # $t0

(pseudo-instruction)

I
AN

MIPS is still considered a load/store architecture, because arithmetic
operands cannot be from arbitrary memory locations. They must either
be registers or constants that are embedded in the instruction.

Our first MIPS program

Let’s translate the following C++ program into MIPS:

1 = 516;
1+ J;

main:
I
addi
mul
I
div
add

Jr

$t0,
$tl,
$tl,
$t2,
$tl,
$to,

$ra

int j = 1*(1+1)/2;

516
$t0,
$t0,

$tl,
$t0,

$tl

$t2
$tl

tart of main
516

m o omm ()

H B H
¥ + 1l
-

H
i

return

Translate this program into MIPS

Program to swap two numbers without using a temporary:

3
= Q)
I =
N\
o/
-

; // N = bitwise XOR

]| hl
Il
> 2> > |

Instructions

= MIPS assemblers support pseudo-instructions
— give the illusion of a more expressive instruction set
— actually translated into one or more simpler, “real” instructions

= Examples li (load immediate) and move (copy one register into another)

= You can always use pseudo-instructions on assignments and on exams

= For now, we’ll focus on real instructions... how are they encoded?
— Answer: As a sequence of bits

(machine language) ~ Instruction fetch

Instruction decode
S Data fetch
= The control unit sits inside an endless loop: Execute

— Result store

MIPS Instructions

MIPS machine language is designed to be easy to fetch and decode:
— each MIPS instruction is the same length, 32 bits

— only three different instruction formats, with many similarities
— format determined by its first 6 bits: operation code, or opcode

Fixed-size instructions:
(+) easy to fetch/pre-fetch instructions
(-) limits number of operations, limits flexibility of ISA

Small number of formats:
(+) easy to decode instructions (simple, fast hardware)
() limits flexibility of ISA

Studying MIPS machine language will also reveal some restrictions in the
instruction set architecture, and how they can be overcome.

10

R-type format

Register-to-register arithmetic instructions use the R-type format

opcode rs rt rd shamt func
6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

Six different fields:
— opcode is an operation code that selects a specific operation
— rs and rt are the first and second source registers
— rd is the destination register
— shamt is only used for shift instructions
— func is used together with opcode to select an arithmetic instruction

The inside back cover of the textbook lists opcodes and function codes
for all of the MIPS instructions

11

MIPS registers

We have to encode register names as 5-bit numbers from 00000 to 11111
— e.g., $t8 is register $24, which is represented as 11000

The number of registers available affects the instruction length:
— R-type instructions references 3 registers: total of 15 bits

— Adding more registers either makes instructions longer than 32 bits, or
shortens fields like opcode (reducing number of available operations)

ppcode

I'S

rt

rd

shamt

func

squeezed—> ¢« wide—» <«wide—

«~wide—

5 bits

«squeezed—

12

I-type format

Used for immediate instructions, plus load, store and branch

opcode rs rt Immediate
6 bits 5 bits 5 bits 16 bits

For uniformity, opcode, rs and rt are located as in the R-format

The meaning of the register fields depends on the exact instruction:
— rs 1s always a source register (memory address for load and store)

— rt is a source register for store and branch, but a destination register
for all other I-type instructions

The immediate is a 16-bit signed two’s-complement value.
— It can range from -32,768 to +32,767.
— Question: How does MIPS load a 32-bit constant into a register?
— Answer: Two instructions. Make the common case fast.

13

Branches

= Two branch instructions:
beq $t0, $tl1, label # if t0O == t1, jump to “label”
bne $t0, $t1, label # if tO = t1, jump to “label”

000100 | 10001 | 10010 0000 0000 0000 0011
op rs rt address (offset)

= [For branch instructions, the constant field is not an address, but an offset
from the current program counter (PC) to the target address.

beq $t0, $tl, EQ
add $t0, $t0, $t1
addi $t1, $tO0, $0
EQ: add $vi, $v0O, $vO

= Since the branch target EQ is three instructions past the beq, the address
field contains 3

14

J-type format

= In real programs, branch targets are less than 32,767 instructions away
— branches are mostly used in loops and conditionals
— programmers are taught to make loop bodies short

= For “far” jumps, use j and jal instructions (J-type instruction format)

opcode address (exact)
6 bits 26 bits

— address is always a multiple of 4 (32 bits per instruction)
— only the top 26 bits actually stored (last two are always 0)

= For even longer jumps, the jump register (jr) instruction can be used.

jr %ra # Jump to 32-bit address In register $ra

Pseudo-branches

The MIPS processor only supports two branch instructions, beq and bne,
but to simplify your life the assembler provides the following other
branches:

blt $t0, $t1, L1 // Branch if $t0 < $t1
ble $t0, $t1, L2 // Branch if $t0 <= $t1
bgt $t0, $t1, L3 // Branch if $t0 > $tl
bge $t0, $t1, L4 // Branch if $t0 >= $tl

There are also immediate versions of these branches, where the second
source Is a constant instead of a register.

Later this semester we’ll see how supporting just beq and bne simplifies
the processor design.

16

