
MIPS: register-to-register, three address

 MIPS is a register-to-register, or load/store, architecture
— destination and sources of instructions must all be registers
— special instructions to access main memory (later)

 MIPS uses three-address instructions for data manipulation
— each ALU instruction contains a destination and two sources

 For example, an addition instruction (a = b + c) has the form:

ti d

add a, b, c

operation operands

destination sources

1

MIPS register file

 MIPS processors have 32 registers, each of which holds a 32-bit value
— register addresses are 5 bits long

 More registers might seem better, but there is a limit to the goodness:
— more expensive: because of registers themselves, plus extra hardware

like muxes to select individual registers
— instruction lengths may be affected 32g y

D data
Write

5

32

D address

32 32 Register File

55

5

A address B address

A data B data

55

32 32

2

32 32

MIPS register names

 MIPS register names begin with a $. There are two naming conventions:
— by number:

$0 $1 $2 … $31

— by (mostly) two-character names, such as:

$a0-$a3 $s0-$s7 $t0-$t9 $sp $ra

 Not all of the registers are equivalent:
— e.g., register $0 or $zero always contains the value 0
— some have special uses, by convention ($sp holds “stack pointer”)

 You have to be a little careful in picking registers for your programsYou have to be a little careful in picking registers for your programs
— for now, stick to the registers $t0-$t9

3

Basic arithmetic and logic operations

 The basic integer arithmetic operations include the following:

add sub mul div

 And here are a few bitwise operations:p

and or xor nor

 Remember that these all require three register operands; for example: Remember that these all require three register operands; for example:

add $t0, $t1, $t2 # $t0 = $t1 + $t2
mul $s1, $s1, $a0 # $s1 = $s1 x $a0mul $s1, $s1, $a0 # $s1 $s1 x $a0

4

Larger expressions

 Complex arithmetic expressions may require multiple MIPS operations

 Example: t0 (t1 t2) (t3 t4)

add $t0, $t1, $t2 # $t0 contains $t1 + $t2
sub $t6, $t3, $t4 # temp value $t6 = $t3 - $t4
mul $t0, $t0, $t6 # $t0 contains the final product

 Temporary registers may be necessary, since each MIPS instructions can
access only two source registers and one destination

i hi l ld i d f i d i — in this example, we could re-use $t3 instead of introducing $t6

— must be careful not to modify registers that are needed again later

5

How are registers initialized?

 Special MIPS instructions allow you to specify a signed constant, or
“i di t ” l f th d i t d f i t“immediate” value, for the second source instead of a register
— e.g., here is the immediate add instruction, addi:

addi $t0 $t1 4 # $t0 = $t1 + 4addi $t0, $t1, 4 # $t0 = $t1 + 4

 Immediate operands can be used in conjunction with the $zero register
to write constants into registers:g

addi $t0, $0, 4 # $t0 = 4

Shorthand: li $t0, 4 # $t0 = 4

MIPS i ill id d l d/ hi b i h i

(pseudo-instruction)

 MIPS is still considered a load/store architecture, because arithmetic
operands cannot be from arbitrary memory locations. They must either
be registers or constants that are embedded in the instruction.

6

Our first MIPS program

 Let’s translate the following C++ program into MIPS:

void main() {
int i = 516;
int j = i*(i+1)/2;j ()
i = i + j;

}
main: # start of mainmain: # start of main
li $t0, 516 # i = 516
addi $t1, $t0, 1 # i + 1
mul $t1 $t0 $t1 # i * (i + 1)mul $t1, $t0, $t1 # i (i + 1)
li $t2, 2
div $t1, $t1, $t2 # j = i*(i+1)/2
add $t0, $t0, $t1 # i = i + j$, $, $ # j

jr $ra # return

7

Translate this program into MIPS

 Program to swap two numbers without using a temporary:

void main() {
int i = 516;
i j 615int j = 615;
i = i ^ j; // ^ = bitwise XOR
j = i ^ j;
i = i ^ j;

}

8

Instructions

 MIPS assemblers support pseudo-instructions
— give the illusion of a more expressive instruction set
— actually translated into one or more simpler, “real” instructions

 Examples li (load immediate) and move (copy one register into another)

 You can always use pseudo-instructions on assignments and on exams You can always use pseudo-instructions on assignments and on exams

 For now, we’ll focus on real instructions… how are they encoded?
— Answer: As a sequence of bits

(machine language) Instruction fetch
Instruction decode
Data fetch

 The control unit sits inside an endless loop:
Data fetch
Execute
Result store

9

MIPS instructions

 MIPS machine language is designed to be easy to fetch and decode:
— each MIPS instruction is the same length, 32 bits
— only three different instruction formats, with many similarities
— format determined by its first 6 bits: operation code, or opcodey p , p

 Fixed-size instructions:
(+) easy to fetch/pre fetch instructions(+) easy to fetch/pre-fetch instructions
() limits number of operations, limits flexibility of ISA

 Small number of formats:
(+) easy to decode instructions (simple, fast hardware)
() limits flexibility of ISA() limits flexibility of ISA

 Studying MIPS machine language will also reveal some restrictions in the
instruction set architecture and how they can be overcome

10

instruction set architecture, and how they can be overcome.

R-type format

 Register-to-register arithmetic instructions use the R-type format

opcode rs rt rd shamt func

6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

 Six different fields:
opcode is an operation code that selects a specific operation— opcode is an operation code that selects a specific operation

— rs and rt are the first and second source registers
— rd is the destination register
— shamt is only used for shift instructions
— func is used together with opcode to select an arithmetic instruction

 The inside back cover of the textbook lists opcodes and function codes
for all of the MIPS instructions

11

MIPS registers

 We have to encode register names as 5-bit numbers from 00000 to 11111
— e.g., $t8 is register $24, which is represented as 11000

 The number of registers available affects the instruction length:g g
— R-type instructions references 3 registers: total of 15 bits
— Adding more registers either makes instructions longer than 32 bits, or

shortens fields like opcode (reducing number of available operations)shortens fields like opcode (reducing number of available operations)

squeezed5 bitswidewidewidesqueezed

funcshamtrdrtrsopcode

12

I-type format

 Used for immediate instructions, plus load, store and branch

opcode rs rt immediate

6 bits 5 bits 5 bits 16 bits

 For uniformity, opcode, rs and rt are located as in the R-format

 The meaning of the register fields depends on the exact instruction:
— rs is always a source register (memory address for load and store)
— rt is a source register for store and branch, but a destination register

f ll h I i ifor all other I-type instructions

 The immediate is a 16-bit signed two’s-complement value.
— It can range from -32,768 to +32,767.
— Question: How does MIPS load a 32-bit constant into a register?
— Answer: Two instructions. Make the common case fast.

13

Branches

 Two branch instructions:
beq $t0, $t1, label # if t0 == t1, jump to “label”
bne $t0, $t1, label # if t0 != t1, jump to “label”

 For branch instructions the constant field is not an address but an offset

000100 10001 10010 0000 0000 0000 0011

op rs rt address (offset)

 For branch instructions, the constant field is not an address, but an offset
from the current program counter (PC) to the target address.

beq $t0, $t1, EQq $, $, Q
add $t0, $t0, $t1
addi $t1, $t0, $0

EQ: add $v1, $v0, $v0

 Since the branch target EQ is three instructions past the beq, the address
field contains 3

14

J-type format

 In real programs, branch targets are less than 32,767 instructions away
— branches are mostly used in loops and conditionals
— programmers are taught to make loop bodies short

 For “far” jumps, use j and jal instructions (J-type instruction format)

opcode address (exact)

— address is always a multiple of 4 (32 bits per instruction)

p ()

6 bits 26 bits

— only the top 26 bits actually stored (last two are always 0)

 For even longer jumps, the jump register (jr) instruction can be used.For even longer jumps, the jump register (jr) instruction can be used.

jr $ra # Jump to 32-bit address in register $ra

15

Pseudo-branches

 The MIPS processor only supports two branch instructions, beq and bne,
b t t i lif lif th bl id th f ll i th but to simplify your life the assembler provides the following other
branches:

blt $t0 $t1 L1 // Branch if $t0 < $t1blt $t0, $t1, L1 // Branch if $t0 < $t1
ble $t0, $t1, L2 // Branch if $t0 <= $t1
bgt $t0, $t1, L3 // Branch if $t0 > $t1
bge $t0, $t1, L4 // Branch if $t0 >= $t1

 There are also immediate versions of these branches, where the second
source is a constant instead of a registersource is a constant instead of a register.

 Later this semester we’ll see how supporting just beq and bne simplifies
the processor design.

16

