
MIPS: register-to-register, three address

 MIPS is a register-to-register, or load/store, architecture
— destination and sources of instructions must all be registers
— special instructions to access main memory (later)

 MIPS uses three-address instructions for data manipulation
— each ALU instruction contains a destination and two sources

 For example, an addition instruction (a = b + c) has the form:

ti d

add a, b, c

operation operands

destination sources

1

MIPS register file

 MIPS processors have 32 registers, each of which holds a 32-bit value
— register addresses are 5 bits long

 More registers might seem better, but there is a limit to the goodness:
— more expensive: because of registers themselves, plus extra hardware

like muxes to select individual registers
— instruction lengths may be affected 32g y

D data
Write

5

32

D address

32  32 Register File

55

5

A address B address

A data B data

55

32 32

2

32 32

MIPS register names

 MIPS register names begin with a $. There are two naming conventions:
— by number:

$0 $1 $2 … $31

— by (mostly) two-character names, such as:

$a0-$a3 $s0-$s7 $t0-$t9 $sp $ra

 Not all of the registers are equivalent:
— e.g., register $0 or $zero always contains the value 0
— some have special uses, by convention ($sp holds “stack pointer”)

 You have to be a little careful in picking registers for your programsYou have to be a little careful in picking registers for your programs
— for now, stick to the registers $t0-$t9

3

Basic arithmetic and logic operations

 The basic integer arithmetic operations include the following:

add sub mul div

 And here are a few bitwise operations:p

and or xor nor

 Remember that these all require three register operands; for example: Remember that these all require three register operands; for example:

add $t0, $t1, $t2 # $t0 = $t1 + $t2
mul $s1, $s1, $a0 # $s1 = $s1 x $a0mul $s1, $s1, $a0 # $s1 $s1 x $a0

4

Larger expressions

 Complex arithmetic expressions may require multiple MIPS operations

 Example: t0  (t1  t2)  (t3  t4)

add $t0, $t1, $t2 # $t0 contains $t1 + $t2
sub $t6, $t3, $t4 # temp value $t6 = $t3 - $t4
mul $t0, $t0, $t6 # $t0 contains the final product

 Temporary registers may be necessary, since each MIPS instructions can
access only two source registers and one destination

i hi l ld i d f i d i — in this example, we could re-use $t3 instead of introducing $t6

— must be careful not to modify registers that are needed again later

5

How are registers initialized?

 Special MIPS instructions allow you to specify a signed constant, or
“i di t ” l f th d i t d f i t“immediate” value, for the second source instead of a register
— e.g., here is the immediate add instruction, addi:

addi $t0 $t1 4 # $t0 = $t1 + 4addi $t0, $t1, 4 # $t0 = $t1 + 4

 Immediate operands can be used in conjunction with the $zero register
to write constants into registers:g

addi $t0, $0, 4 # $t0 = 4

Shorthand: li $t0, 4 # $t0 = 4

MIPS i ill id d l d/ hi b i h i

(pseudo-instruction)

 MIPS is still considered a load/store architecture, because arithmetic
operands cannot be from arbitrary memory locations. They must either
be registers or constants that are embedded in the instruction.

6

Our first MIPS program

 Let’s translate the following C++ program into MIPS:

void main() {
int i = 516;
int j = i*(i+1)/2;j ()
i = i + j;

}
main: # start of mainmain: # start of main
li $t0, 516 # i = 516
addi $t1, $t0, 1 # i + 1
mul $t1 $t0 $t1 # i * (i + 1)mul $t1, $t0, $t1 # i (i + 1)
li $t2, 2
div $t1, $t1, $t2 # j = i*(i+1)/2
add $t0, $t0, $t1 # i = i + j$, $, $ # j

jr $ra # return

7

Translate this program into MIPS

 Program to swap two numbers without using a temporary:

void main() {
int i = 516;
i j 615int j = 615;
i = i ^ j; // ^ = bitwise XOR
j = i ^ j;
i = i ^ j;

}

8

Instructions

 MIPS assemblers support pseudo-instructions
— give the illusion of a more expressive instruction set
— actually translated into one or more simpler, “real” instructions

 Examples li (load immediate) and move (copy one register into another)

 You can always use pseudo-instructions on assignments and on exams You can always use pseudo-instructions on assignments and on exams

 For now, we’ll focus on real instructions… how are they encoded?
— Answer: As a sequence of bits

(machine language) Instruction fetch
Instruction decode
Data fetch

 The control unit sits inside an endless loop:
Data fetch
Execute
Result store

9

MIPS instructions

 MIPS machine language is designed to be easy to fetch and decode:
— each MIPS instruction is the same length, 32 bits
— only three different instruction formats, with many similarities
— format determined by its first 6 bits: operation code, or opcodey p , p

 Fixed-size instructions:
(+) easy to fetch/pre fetch instructions(+) easy to fetch/pre-fetch instructions
() limits number of operations, limits flexibility of ISA

 Small number of formats:
(+) easy to decode instructions (simple, fast hardware)
() limits flexibility of ISA() limits flexibility of ISA

 Studying MIPS machine language will also reveal some restrictions in the
instruction set architecture and how they can be overcome

10

instruction set architecture, and how they can be overcome.

R-type format

 Register-to-register arithmetic instructions use the R-type format

opcode rs rt rd shamt func

6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

 Six different fields:
opcode is an operation code that selects a specific operation— opcode is an operation code that selects a specific operation

— rs and rt are the first and second source registers
— rd is the destination register
— shamt is only used for shift instructions
— func is used together with opcode to select an arithmetic instruction

 The inside back cover of the textbook lists opcodes and function codes
for all of the MIPS instructions

11

MIPS registers

 We have to encode register names as 5-bit numbers from 00000 to 11111
— e.g., $t8 is register $24, which is represented as 11000

 The number of registers available affects the instruction length:g g
— R-type instructions references 3 registers: total of 15 bits
— Adding more registers either makes instructions longer than 32 bits, or

shortens fields like opcode (reducing number of available operations)shortens fields like opcode (reducing number of available operations)

squeezed5 bitswidewidewidesqueezed

funcshamtrdrtrsopcode

12

I-type format

 Used for immediate instructions, plus load, store and branch

opcode rs rt immediate

6 bits 5 bits 5 bits 16 bits

 For uniformity, opcode, rs and rt are located as in the R-format

 The meaning of the register fields depends on the exact instruction:
— rs is always a source register (memory address for load and store)
— rt is a source register for store and branch, but a destination register

f ll h I i ifor all other I-type instructions

 The immediate is a 16-bit signed two’s-complement value.
— It can range from -32,768 to +32,767.
— Question: How does MIPS load a 32-bit constant into a register?
— Answer: Two instructions. Make the common case fast.

13

Branches

 Two branch instructions:
beq $t0, $t1, label # if t0 == t1, jump to “label”
bne $t0, $t1, label # if t0 != t1, jump to “label”

 For branch instructions the constant field is not an address but an offset

000100 10001 10010 0000 0000 0000 0011

op rs rt address (offset)

 For branch instructions, the constant field is not an address, but an offset
from the current program counter (PC) to the target address.

beq $t0, $t1, EQq $, $, Q
add $t0, $t0, $t1
addi $t1, $t0, $0

EQ: add $v1, $v0, $v0

 Since the branch target EQ is three instructions past the beq, the address
field contains 3

14

J-type format

 In real programs, branch targets are less than 32,767 instructions away
— branches are mostly used in loops and conditionals
— programmers are taught to make loop bodies short

 For “far” jumps, use j and jal instructions (J-type instruction format)

opcode address (exact)

— address is always a multiple of 4 (32 bits per instruction)

p ()

6 bits 26 bits

— only the top 26 bits actually stored (last two are always 0)

 For even longer jumps, the jump register (jr) instruction can be used.For even longer jumps, the jump register (jr) instruction can be used.

jr $ra # Jump to 32-bit address in register $ra

15

Pseudo-branches

 The MIPS processor only supports two branch instructions, beq and bne,
b t t i lif lif th bl id th f ll i th but to simplify your life the assembler provides the following other
branches:

blt $t0 $t1 L1 // Branch if $t0 < $t1blt $t0, $t1, L1 // Branch if $t0 < $t1
ble $t0, $t1, L2 // Branch if $t0 <= $t1
bgt $t0, $t1, L3 // Branch if $t0 > $t1
bge $t0, $t1, L4 // Branch if $t0 >= $t1

 There are also immediate versions of these branches, where the second
source is a constant instead of a registersource is a constant instead of a register.

 Later this semester we’ll see how supporting just beq and bne simplifies
the processor design.

16

