
1

How is work split up across multiple cores?

 Recall from section that the work per iteration can be badly imbalanced:
parallel_for(int i = 0; i < N; ++i)
loop_body(i); // Time(i) not constant

 How finely should the range (0, N) be split? (grainsize)

1

Work vs.
Overhead

Too fine ⇒ much overhead
Coarse ⇒ little parallelism
and imbalances hurt more

2

Task Scheduler: Dynamic Load Balancing

 The task scheduler’s job is to keep all the processors busy

 Given a set of jobs J1, J2, …, Jn, and associated times t1, t2, …, tn , and k
processors, it is NP-hard to find the best way to assign jobs to processors

 The job is even harder for the task scheduler:
— Job times are unknown (and hard to estimate)
— Jobs may arrive over a period of time, not all at once

 TBB uses a heuristic called work-stealing
— you can replace the default heuristic with others or your own

 CS225 concept: Deque (double-ended queue)

3

TBB Task Scheduling Heuristic

 Each available processor will maintain a deque of tasks (sub-ranges)

 P1’s deque:

 P1 processes its deque bottom-up
— if P1 done, it steals from top of Prandom’s deque

 An improvement:

0 N/4 N/2 3N/4
P1 P2 P3 P4

0 N/8

0

3N/16

N/8

N/16

0

≤ grainsize

0 N/8

0 N/16

0

N/8

4

Other ways to exploit parallelism

 Suppose the iterations of a loop must be done sequentially
— but tasks within each iteration can be done in parallel
for(int t = 0; t < N; ++t) {
taskA(t);
taskB(t);
taskC(t);

}

 What if tasks must also be in order: A → B → C → … ?
— Or, more generally:

 Answer: Pipelining!

A

B
C

D

E

in_parallel(taskA(t),taskB(t),taskC(t));

5

The hazards of parallelism

 We have already seen how race conditions lead to incorrect behavior

 Consider the following example:

for(int i = 0; i < N; ++i)
result = result ⊗ f(A[i]); // ⊗ = some operation

 Correct approach to parallelization: reduction

 Alternate approach:

temp[NUM_THREADS] = {0, 0, ..., 0};
parallel_for(int i = 0; i < N; ++i)
temp[thread_id()] = temp[thread_id()] ⊗ f(A[i]);

// in serial, merge temp array into a single result

6

False Sharing

 The statement causing the problem is:
temp[thread_id()] = temp[thread_id()] ⊗ f(A[i]);

 There is no race condition here, but temp[0], temp[1], ... are all
spatially local, and hence within the same cache block!

 When temp[0] is changed by thread 0, the entire block is marked dirty

— this block must be sent to other processors that use this block

Multiple bouncing
slows performance

MESI protocol (a.k.a. Illinois Protocol)
Modified
Exclusive
Shared
Invalid

7

Tips for MP6

 Do Task 1 first: make sure you have a fast version of the serial code!

 CSIL is running slow
— the problem is not CPU utilization, it is I/O

 Give the following commands once you are in csil-linux-ts1:
cd /scratch
mkdir yourNetID
chmod 700 yourNetID
cd yourNetID
cp ~/mp6*.cxx ./

 Be sure to make your directory unreadable (chmod operation)!

 Be sure to copy your work over to your home folder regularly:
cp ./mp6*.cxx ~/

	How is work split up across multiple cores?
	Task Scheduler: Dynamic Load Balancing
	TBB Task Scheduling Heuristic
	Other ways to exploit parallelism
	The hazards of parallelism
	False Sharing
	Tips for MP6

