
CS232 roadmap

 Here is what we have covered so far
1. Understanding the relationship between HLL and assembly code
2. Processor design, pipelining, and performance
3. Memory systems, caches, virtual memory, I/O

 The next major topic is: performance tuning
— How can I, as a programmer, make my programs run fast?
— First step: where/why is my program slow?

• Program profiling
 How does one go about optimizing a program?

— Use better algorithms (do this first!)
— Exploit the processor better (3 ways)

1. Write hand-tuned assembly versions of hot spots
2. Getting more done with every instruction
3. Using more than one processor

2

Performance Optimization Flowchart

“We should forget about small efficiencies, say about 97% of the time.”
-- Sir Tony Hoare

3

Collecting data

 The process is called “instrumenting the code”

 One option is to do this by hand:
— record entry and exit times for suspected “hot” blocks of code
— but this is tedious and error prone

 Fortunately, there are tools to do this instrumenting for us:
— Gprof: The GNU profiler (compile with the -pg flag)
— gcc keeps track of source code  object code correspondence
— also links in a profiling signal handler

• the program requests OS to periodically send it signals
• signal handler records instruction that was executing (gmon.out)

— Display results using gprof command
• Shows how much time is being spent in each function
• Shows the path of function calls to the hot spot

4

Performance Optimization, cont.

How do we fix
performance
problems?

5

Exploiting Parallelism

 We can exploit parallelism in two ways:

1. At the instruction level
— Single Instruction Multiple Data (SIMD)
— Make use of extensions to the ISA

2. At the core level
— Rewrite the code to parallelize operations across many cores
— Make use of extensions to the programming language

6

Exploiting Parallelism at the Instruction level (SIMD)

 Consider adding together two arrays:

void
array_add(int A[], int B[], int C[], int length) {

int i;
for (i = 0 ; i < length ; ++ i) {
C[i] = A[i] + B[i];

}
}

+

Operating on one element at a time

7

Exploiting Parallelism at the Instruction level (SIMD)

 Consider adding together two arrays:

void
array_add(int A[], int B[], int C[], int length) {

int i;
for (i = 0 ; i < length ; ++ i) {
C[i] = A[i] + B[i];

}
}

+

Operating on one element at a time

8

 Consider adding together two arrays:

void
array_add(int A[], int B[], int C[], int length) {

int i;
for (i = 0 ; i < length ; ++ i) {
C[i] = A[i] + B[i];

}
}

+

Exploiting Parallelism at the Instruction level (SIMD)

+

Operate on MULTIPLE elements

+ + Single Instruction,
Multiple Data (SIMD)

9

Intel SSE/SSE2 as an example of SIMD

• Added new 128 bit registers (XMM0 – XMM7), each can store
— 4 single precision FP values (SSE) 4 * 32b
— 2 double precision FP values (SSE2) 2 * 64b
— 16 byte values (SSE2) 16 * 8b
— 8 word values (SSE2) 8 * 16b
— 4 double word values (SSE2) 4 * 32b
— 1 128-bit integer value (SSE2) 1 * 128b

4.0 (32 bits)

+

4.0 (32 bits) 3.5 (32 bits) -2.0 (32 bits)

2.3 (32 bits)1.7 (32 bits)2.0 (32 bits)-1.5 (32 bits)

0.3 (32 bits)5.2 (32 bits)6.0 (32 bits)2.5 (32 bits)

10

SIMD Extensions

More than 70 instructions. Arithmetic Operations supported:
Addition, Subtraction, Mult, Division, Square Root, Maximum,
Minimum. Can operate on Floating point or Integer data.

11

Is it always that easy?

 No, not always. Let’s look at a little more challenging one:

unsigned sum_array(unsigned *array, int length) {
int total = 0;
for (int i = 0 ; i < length ; ++ i) {

total += array[i];
}
return total;

}

 Is there parallelism here?
— Yes, we could split the loop across two cores

12

How much faster?

 We’re expecting a speedup of 2

 OK, perhaps a little less because of Amdahl’s Law
— overhead for forking and joining multiple threads

 But its actually slower!! Why??

 Here’s the mental picture that we have – two processors, shared memory

total

shared variable in memory

13

This mental picture is wrong!

 We’ve forgotten about caches!
— The memory may be shared, but each processor has its own L1 cache
— As each processor updates total, it bounces between L1 caches

Multiple bouncing
slows performance

14

The code is not only slow, its WRONG!

 Since the variable total is shared, we can get a data race

 Increment operation: total+= … MIPS equivalent:

 A data race occurs when data is accessed and manipulated by multiple
processors, and the outcome depends on the sequence or timing of these
events.

Sequence 1 Sequence 2
Processor 1 Processor 2 Processor 1 Processor 2
lw $t0, total lw $t0, total
addi $t0, $t0, $t1 lw $t0, total
sw $t0, total addi $t0, $t0, $t1

lw $t0, total addi $t0, $t0, $t1
addi $t0, $t0, $t1 sw $t0, total
sw $t0, total sw $t0, total

counter increases twice counter increases once !!

lw $t0, total
addi $t0, $t0, $t1
sw $t0, total

We first need to restructure the code

unsigned sum_array2(unsigned *array, int length) {
unsigned total, i;
unsigned temp[4] = {0, 0, 0, 0};
for (i = 0 ; i < length & ~0x3 ; i += 4) {

temp[0] += array[i];
temp[1] += array[i+1];
temp[2] += array[i+2];
temp[3] += array[i+3];

}
total = temp[0] + temp[1] + temp[2] + temp[3];
for (; i < length ; ++ i) {

total += array[i];
}
return total;

}

16

Then we can write SIMD code for the hot part

unsigned sum_array2(unsigned *array, int length) {
unsigned total, i;
unsigned temp[4] = {0, 0, 0, 0};
for (i = 0 ; i < length & ~0x3 ; i += 4) {

temp[0] += array[i];
temp[1] += array[i+1];
temp[2] += array[i+2];
temp[3] += array[i+3];

}
total = temp[0] + temp[1] + temp[2] + temp[3];
for (; i < length ; ++ i) {

total += array[i];
}
return total;

}

17

Exploiting a multi-core processor

 Hardware can guarantee correctness with atomic operations, but its slow

 What if each thread had its own copy of total? (private, not shared)

parallel_for (int i = 0; i < length; ++i){
total += array[i];

}

parallel_for (int i = 0; i < length; ++i) private(total) {
total += array[i]; // increment local copy

}

 This works because “+” is associative and commutative
 fortunately, common operations have these properties

// Now reduce the local copies of counter into a single variable

18

Summary

 Performance is of primary concern in some applications
— Games, servers, mobile devices, super computers

 Many important applications have parallelism
— Exploiting it is a good way to speed up programs.

 Single Instruction Multiple Data (SIMD) does this at ISA level
— Registers hold multiple data items, instruction operate on them
— Can achieve factor or 2, 4, 8 speedups on kernels
— May require some restructuring of code to expose parallelism

 Exploiting core-level parallelism
— May require atomic operations to avoid data races
— Can sometimes be sped up using reductions

