
CS232 roadmap

 Here is what we have covered so far
1. Understanding the relationship between HLL and assembly code
2. Processor design, pipelining, and performance
3. Memory systems, caches, virtual memory, I/O

 The next major topic is: performance tuning
— How can I, as a programmer, make my programs run fast?
— First step: where/why is my program slow?

• Program profiling
 How does one go about optimizing a program?

— Use better algorithms (do this first!)
— Exploit the processor better (3 ways)

1. Write hand-tuned assembly versions of hot spots
2. Getting more done with every instruction
3. Using more than one processor

2

Performance Optimization Flowchart

“We should forget about small efficiencies, say about 97% of the time.”
-- Sir Tony Hoare

3

Collecting data

 The process is called “instrumenting the code”

 One option is to do this by hand:
— record entry and exit times for suspected “hot” blocks of code
— but this is tedious and error prone

 Fortunately, there are tools to do this instrumenting for us:
— Gprof: The GNU profiler (compile with the -pg flag)
— gcc keeps track of source code object code correspondence
— also links in a profiling signal handler

• the program requests OS to periodically send it signals
• signal handler records instruction that was executing (gmon.out)

— Display results using gprof command
• Shows how much time is being spent in each function
• Shows the path of function calls to the hot spot

4

Performance Optimization, cont.

How do we fix
performance
problems?

5

Exploiting Parallelism

 We can exploit parallelism in two ways:

1. At the instruction level
— Single Instruction Multiple Data (SIMD)
— Make use of extensions to the ISA

2. At the core level
— Rewrite the code to parallelize operations across many cores
— Make use of extensions to the programming language

6

Exploiting Parallelism at the Instruction level (SIMD)

 Consider adding together two arrays:

void
array_add(int A[], int B[], int C[], int length) {

int i;
for (i = 0 ; i < length ; ++ i) {
C[i] = A[i] + B[i];

}
}

+

Operating on one element at a time

7

Exploiting Parallelism at the Instruction level (SIMD)

 Consider adding together two arrays:

void
array_add(int A[], int B[], int C[], int length) {

int i;
for (i = 0 ; i < length ; ++ i) {
C[i] = A[i] + B[i];

}
}

+

Operating on one element at a time

8

 Consider adding together two arrays:

void
array_add(int A[], int B[], int C[], int length) {

int i;
for (i = 0 ; i < length ; ++ i) {
C[i] = A[i] + B[i];

}
}

+

Exploiting Parallelism at the Instruction level (SIMD)

+

Operate on MULTIPLE elements

+ + Single Instruction,
Multiple Data (SIMD)

9

Intel SSE/SSE2 as an example of SIMD

• Added new 128 bit registers (XMM0 – XMM7), each can store
— 4 single precision FP values (SSE) 4 * 32b
— 2 double precision FP values (SSE2) 2 * 64b
— 16 byte values (SSE2) 16 * 8b
— 8 word values (SSE2) 8 * 16b
— 4 double word values (SSE2) 4 * 32b
— 1 128-bit integer value (SSE2) 1 * 128b

4.0 (32 bits)

+

4.0 (32 bits) 3.5 (32 bits) -2.0 (32 bits)

2.3 (32 bits)1.7 (32 bits)2.0 (32 bits)-1.5 (32 bits)

0.3 (32 bits)5.2 (32 bits)6.0 (32 bits)2.5 (32 bits)

10

SIMD Extensions

More than 70 instructions. Arithmetic Operations supported:
Addition, Subtraction, Mult, Division, Square Root, Maximum,
Minimum. Can operate on Floating point or Integer data.

11

Is it always that easy?

 No, not always. Let’s look at a little more challenging one:

unsigned sum_array(unsigned *array, int length) {
int total = 0;
for (int i = 0 ; i < length ; ++ i) {

total += array[i];
}
return total;

}

 Is there parallelism here?
— Yes, we could split the loop across two cores

12

How much faster?

 We’re expecting a speedup of 2

 OK, perhaps a little less because of Amdahl’s Law
— overhead for forking and joining multiple threads

 But its actually slower!! Why??

 Here’s the mental picture that we have – two processors, shared memory

total

shared variable in memory

13

This mental picture is wrong!

 We’ve forgotten about caches!
— The memory may be shared, but each processor has its own L1 cache
— As each processor updates total, it bounces between L1 caches

Multiple bouncing
slows performance

14

The code is not only slow, its WRONG!

 Since the variable total is shared, we can get a data race

 Increment operation: total+= … MIPS equivalent:

 A data race occurs when data is accessed and manipulated by multiple
processors, and the outcome depends on the sequence or timing of these
events.

Sequence 1 Sequence 2
Processor 1 Processor 2 Processor 1 Processor 2
lw $t0, total lw $t0, total
addi $t0, $t0, $t1 lw $t0, total
sw $t0, total addi $t0, $t0, $t1

lw $t0, total addi $t0, $t0, $t1
addi $t0, $t0, $t1 sw $t0, total
sw $t0, total sw $t0, total

counter increases twice counter increases once !!

lw $t0, total
addi $t0, $t0, $t1
sw $t0, total

We first need to restructure the code

unsigned sum_array2(unsigned *array, int length) {
unsigned total, i;
unsigned temp[4] = {0, 0, 0, 0};
for (i = 0 ; i < length & ~0x3 ; i += 4) {

temp[0] += array[i];
temp[1] += array[i+1];
temp[2] += array[i+2];
temp[3] += array[i+3];

}
total = temp[0] + temp[1] + temp[2] + temp[3];
for (; i < length ; ++ i) {

total += array[i];
}
return total;

}

16

Then we can write SIMD code for the hot part

unsigned sum_array2(unsigned *array, int length) {
unsigned total, i;
unsigned temp[4] = {0, 0, 0, 0};
for (i = 0 ; i < length & ~0x3 ; i += 4) {

temp[0] += array[i];
temp[1] += array[i+1];
temp[2] += array[i+2];
temp[3] += array[i+3];

}
total = temp[0] + temp[1] + temp[2] + temp[3];
for (; i < length ; ++ i) {

total += array[i];
}
return total;

}

17

Exploiting a multi-core processor

 Hardware can guarantee correctness with atomic operations, but its slow

 What if each thread had its own copy of total? (private, not shared)

parallel_for (int i = 0; i < length; ++i){
total += array[i];

}

parallel_for (int i = 0; i < length; ++i) private(total) {
total += array[i]; // increment local copy

}

 This works because “+” is associative and commutative
 fortunately, common operations have these properties

// Now reduce the local copies of counter into a single variable

18

Summary

 Performance is of primary concern in some applications
— Games, servers, mobile devices, super computers

 Many important applications have parallelism
— Exploiting it is a good way to speed up programs.

 Single Instruction Multiple Data (SIMD) does this at ISA level
— Registers hold multiple data items, instruction operate on them
— Can achieve factor or 2, 4, 8 speedups on kernels
— May require some restructuring of code to expose parallelism

 Exploiting core-level parallelism
— May require atomic operations to avoid data races
— Can sometimes be sped up using reductions

