AMD dual-core Opteron
Who we are

- **Lecturer:**

 Prof. Viraj Kumar
 kumar@illinois.edu
 Visiting Lecturer

 Office hours: Friday 4pm to 5pm and by email, 2211 SC

- **Teaching Assistants/Section Instructor:** Room 0212 SC

 Ryan Cunningham
 rcunnin2@illinois.edu
 Thu. Pm (lab)

 Abner Guzman Rivera
 aguzman5@illinois.edu
 Thu. Pm (lab)

 Arushi Aggarwal
 aggarwa4@illinois.edu
 Fri. 10-11am

 Pritam Sukumar
 sukumar2@illinois.edu
 Thu. 10-11am

- MPs released on Friday, (usually) due next Friday
Graded work

- Five or six MPs, builds towards SPIMbot Tournament, 25% of grade
 - You can work individually, or in groups of 2 or 3
 - Submit something that can be tested by the deadline
 - I’ll email you feedback (using an auto-grader) within 24 hours
 - You can resubmit for full credit 48 hours after the deadline

- Three Wednesday evening Midterms, 15% each
 - Exam 1: 2/24 ; Exam 2: 3/17 ; Exam 3: 4/21 (tentative)

- Final, cumulative, date to be decided: 25%

- Section attendance: 5%
What is computer architecture about?

- **Computer architecture** is about building and analyzing computer systems

- Instruction Set Architecture is bridge between hardware and software
 - Study the MIPS ISA in detail
 - Learn what compilers do when they translate high-level code into assembly (we won’t learn *how* they do it)
 - Learn how HLL program constructs are represented to the machine

- Key techniques: Pipelining, Caching, Virtual Memory

- Tuning complex code for performance (course project)

- Exploiting parallelism

Hey Prof. Kumar, Today I interviewed at Microsoft. I referenced spimbot and used concepts learned in class multiple times. I just wanted to say THANKS!
Multi-Core Processors

- Two (or more) complete processors, fabricated on the same silicon chip
- Execute instructions from two (or more) programs/threads at the same time

IBM Power5

XBox360: 3 PowerPC cores

Sony PS 3: asymmetric 9 cores
Why Multi-cores Now?

- Number of transistors we can put on a chip growing exponentially
Power has become a limiting factor for single cores – hence multi-cores
As programmers, do we care?

- What happens if we run a program on a multi-core?

```c
void array_add(int A[], int B[], int C[], int length) {
    int i;
    for (i = 0 ; i < length ; ++i) {
        C[i] = A[i] + B[i];
    }
}
```
Instruction set architectures

- The ISA is an interface between software and hardware
 - the hardware “promises” to implement all ISA instructions
 - the software uses ISA primitives to build complex programs

- The instruction set architecture affects the hardware design
 - simple ISAs require simpler, cheaper processors

- Also affects software design
 - simple ISAs result in longer programs
Why MIPS?

- We study the MIPS instruction set architecture to illustrate concepts in assembly language and machine organization
 - concepts are not MIPS-specific
 - MIPS is just convenient because it is real, yet simple (unlike x86)

- MIPS ISA is used in many places, primarily in embedded systems
 - routers from Cisco
 - game machines like the Nintendo 64 and Sony Playstation 2
What you will need to learn for Exam 1

- You must become “fluent” in MIPS assembly:
 - Translate from C++ to MIPS and MIPS to C++

Example: Translate the following recursive C++ function into MIPS

```c++
int pow(int n, int m) {
    if (m == 1)
        return n;
    return n * pow(n, m-1);
}
```

How are arguments passed?
How are values returned?
How are complex expressions broken into simple instructions?

How is recursion done?
MP 1: Gray codes

- A binary representation of integers, **where successive integers differ in exactly one bit**
 - the standard representation does not have this property

- For an integer \(n \), let \((n)\) denote the binary representation of \(n \)

- The gray-code representation of \(n \) is: \((n) \oplus (\lfloor n/2 \rfloor)\)
 - here, “\(\oplus\)” is bit-wise XOR and \(\lfloor \ \rfloor\) is the floor function

- **Example:** \text{gray-code}(6) =
MP 1: Gray codes contd.

- The gray-code representation of n is: $(n) \oplus (\lfloor n/2 \rfloor)$

- Note that $\lfloor n/2 \rfloor = n >> 1$ (right-shift)

- Example: gray-code(6) =