
February 6, 2009 ISA's, Compilers, and Assembly 1

Instruction sets, RISC vs. CISC, Compilers, Assemblers,
Linkers, Loaders, Memory images, and who cares

about assembly.

CS232

February 6, 2009 ISA's, Compilers, and Assembly 2

Instruction Set Architecture (ISA)

  The ISA is the interface between hardware and software.

  The ISA serves as an abstraction layer between the HW and SW
—  Software doesn’t need to know how the processor is implemented
—  Any processor that implements the ISA appears equivalent

  An ISA enables processor innovation without changing software
—  This is how Intel has made billions of dollars.

  Before ISAs, software was re-written/re-compiled for each new machine.

Software

Proc #1

ISA

Proc #2

February 6, 2009 ISA's, Compilers, and Assembly 3

A little ISA history

  1964: IBM System/360, the first computer family
—  IBM wanted to sell a range of machines that ran the same software

  1960’s, 1970’s: Complex Instruction Set Computer (CISC) era
—  Much assembly programming, compiler technology immature
—  Simple machine implementations
—  Complex instructions simplified programming, little impact on design

  1980’s: Reduced Instruction Set Computer (RISC) era
—  Most programming in high-level languages, mature compilers
—  Aggressive machine implementations
—  Simpler, cleaner ISA’s facilitated pipelining, high clock frequencies

  1990’s: Post-RISC era
—  ISA complexity largely relegated to non-issue
—  CISC and RISC chips use same techniques (pipelining, superscalar, ..)
—  ISA compatibility outweighs any RISC advantage in general purpose
—  Embedded processors prefer RISC for lower power, cost

  2000’s: Multi-core and Multithreading

February 6, 2009 ISA's, Compilers, and Assembly 4

RISC vs. CISC

  MIPS was one of the first RISC architectures. It was started about 20 years
ago by John Hennessy, one of the authors of our textbook.

  The architecture is similar to that of other RISC architectures, including
Sun’s SPARC, IBM and Motorola’s PowerPC, and ARM-based processors.

  Older processors used complex instruction sets, or CISC architectures.
—  Many powerful instructions were supported, making the assembly

language programmer’s job much easier.
—  But this meant that the processor was more complex, which made the

hardware designer’s life harder.
  Many new processors use reduced instruction sets, or RISC architectures.

—  Only relatively simple instructions are available. But with high-level
languages and compilers, the impact on programmers is minimal.

—  On the other hand, the hardware is much easier to design, optimize,
and teach in classes.

  Even most current CISC processors, such as Intel 8086-based chips, are
now implemented using a lot of RISC techniques.

February 6, 2009 ISA's, Compilers, and Assembly 5

Differences between ISA’s

  Much more is similar between ISA’s than different. Compare MIPS & x86:

—  Instructions:
•  same basic types
•  different names and variable-length encodings
•  x86 branches use condition codes
•  x86 supports (register + memory) -> (register) format

—  Registers:
•  Register-based architecture
•  different number and names, x86 allows partial reads/writes

—  Memory:
•  Byte addressable, 32-bit address space
•  x86 has additional addressing modes
•  x86 does not require addresses to be aligned
•  x86 has segmentation, but not used by most modern O/S’s

February 6, 2009 ISA's, Compilers, and Assembly 6

The compilation process

February 6, 2009 ISA's, Compilers, and Assembly 7

The purpose of a linker

February 6, 2009 ISA's, Compilers, and Assembly 8

What the linker does

February 6, 2009 ISA's, Compilers, and Assembly 9

Object File Formats

February 6, 2009 ISA's, Compilers, and Assembly 10

Loader

  Before we can start executing a program, the O/S must load it:

  Loading involves 5 steps:
1.  Allocates memory for the program's execution.

2.  Copies the text and data segments from the executable into memory.

3.  Copies program arguments (e.g., command line arguments) onto the stack.

4.  Initializes registers: sets $sp to point to top of stack, clears the rest.

5.  Jumps to start routine, which: 1) copies main's arguments off of the stack,

and 2) jumps to main.

February 6, 2009 ISA's, Compilers, and Assembly 11

MIPS memory image

Structs

  Structs are like arrays, but the elements can be different types.
—  Same with objects

  Compiler/assembler inserts padding to “naturally align” data
—  Sometimes you can reorganize fields to eliminate padding.

  Consider:

February 6, 2009 ISA's, Compilers, and Assembly 12

February 6, 2009 ISA's, Compilers, and Assembly 13

Whither Assembly Language

February 6, 2009 ISA's, Compilers, and Assembly 14

Inline assembly Example

intadd(int a, int b) { /* return a + b */

int ret_val;

__asm("add %2, %0, %1", a, b, ret_val);

return(ret_val);

}

