
Department of Computer Science

Data Structures and Algorithms

CS 225
Brad Solomon April 19, 2024

Bloom Filters

Data Structures Review

What method would you use to build a search index on a
collection of objects?

Memory-Constrained Data Structures

What method would you use to build a search index on a
collection of objects in a memory-constrained environment?

Google Index Estimate: >60 billion webpages
Google Universe Estimate (2013): >130 trillion webpages

Constrained by Big Data (Large 𝑁)

Memory-Constrained Data Structures

What method would you use to build a search index on a
collection of objects in a memory-constrained environment?

GTEx

Constrained by Big Data (Large 𝑁)

Sequence Read Archive Size: >60 petabases (1015)

Memory-Constrained Data Structures

What method would you use to build a search index on a
collection of objects in a memory-constrained environment?

Constrained by Big Data (Large 𝑁)

Table: http://doi.org/10.5334/dsj-2015-011

Estimated total volume of one array: 4.6 EB
Image: https://doi.org/10.1038/nature03597

http://doi.org/10.5334/dsj-2015-011
https://doi.org/10.1038/nature03597

Memory-Constrained Data Structures

What method would you use to build a search index on a
collection of objects in a memory-constrained environment?

cache

RAM

disk

network

< 1 second

Months

Years

Hours - Days

(Estimates are Time x 1 billion courtesy of https://gist.github.com/hellerbarde/2843375)

Constrained by resource limitations

https://gist.github.com/hellerbarde/2843375

Memory-Constrained Data Structures

What method would you use to build a search index on a
collection of objects in a memory-constrained environment?

Reducing storage costs

1) Throw out information that isn’t needed

2) Compress the dataset

Reducing a hash table
𝑘!
𝑣!

𝑘"
𝑣"

𝑘#
𝑣#

𝑘$
𝑣$

𝑘%
𝑣%

𝑘&
𝑣&

𝑘'
𝑣'

𝑘(
𝑣(

What can we remove from a
hash table?

𝑚

𝐻(𝑘!) = 𝑖!

Take away values

Reducing a hash table

What can we remove from a
hash table?

𝑘!
𝑣!

𝑘"
𝑣"

𝑘#
𝑣#

𝑘$
𝑣$

𝑘%
𝑣%

𝑘&
𝑣&

𝑘'
𝑣'

𝑘(
𝑣(

𝑚

𝐻(𝑘!) = 𝑖!

𝑚

Reducing a hash table

What can we remove from a
hash table?

Take away values and keys

𝐻(𝑘!) = 𝑖!

1

0
0
0
0
0

1
0
0
1
0

0
0
0
0

0
1
0
0
0

𝑚

Reducing a hash table

What can we remove from a
hash table?

Take away values and keys

𝐻(𝑘!) = 𝑖!

Bloom Filter: Insertion

0 0
1 0
2 0
3 0
4 0
5 0
6 0

S = { 16, 8, 4, 13, 29, 11, 22 }

h(k) = k % 7

Bloom Filter: Insertion
An item is inserted into a bloom filter by hashing and
then setting the hash-valued bit to 1

If the bit was already one, it stays 1

0
0
1
0
0
1
0
1
0
0

𝐻(𝑥!)

𝐻(𝑥")

𝐻(𝑥#)
𝐻(𝑥$)

Bloom Filter: Deletion

0 0
1 1
2 1
3 0
4 1
5 0
6 1

S = { 16, 8, 4, 13, 29, 11, 22 }

h(k) = k % 7

_delete(13)

_delete(29)

Bloom Filter: Search

0 0
1 1
2 1
3 0
4 1
5 0
6 1

S = { 16, 8, 4, 13, 29, 11, 22 }

h(k) = k % 7

_find(16)

_find(20)

_find(3)

Bloom Filter: Search

The bloom filter is a probabilistic data structure!

𝐻(𝛼)

If the value in the BF is 0:

If the value in the BF is 1:

0
0
1
0
0
1
0
1
0
0

𝐻(𝑥!)

𝐻(𝑥")

𝐻(𝑥#)

𝐻(𝑥$)

𝐻(𝛽)

𝐻(𝛿)

Probabilistic Accuracy: Malicious Websites
Imagine we have a detection oracle that identifies if a site is malicious

“Not malicious”

“Malicious”

Probabilistic Accuracy: Malicious Websites
Imagine we have a detection oracle that identifies if a site is malicious

True Positive:

False Positive:

False Negative:

True Negative:

Item Inserted

Bit Value = 1

Item NOT inserted

Bit Value = 0

0
1
0
0
1

‘Yes’
𝐻(𝑧)

0
0
0
0
1

‘No’

True Positive
0
1
0
0
1

‘Yes’

False Positive

𝐻(𝑧) 0
0
0
0
1

‘No’

False Negative

True Negative

Imagine we have a bloom filter that stores malicious sites…

𝐻(𝑧) 𝐻(𝑧)

Probabilistic Accuracy: One-sided error

We will NEVER have a False Negative: 70
9

70
9≠

We will get some False Positives: 70
9=210

21
0035

02
301
7

98
1

34
2830

01
733
2

52
5
09
2

70
9 search with one-

sided error

70
9

Query:

Dataset:

21
0

02
334
2830

01
733
2

52
5
09
2

70
9

21
0035

02
301
7

98
1

34
2830

01
733
2

52
5
09
2

70
9 search with one-

sided error

70
9

Query:

Dataset:

21
0

02
334
2830

01
733
2

52
5
09
2

70
9

21
0

02
334
2830

01
733
2

52
5
09
2

70
9

70
9

Query:

search with one-
sided error

02
334
2830

01
733
2

52
5
09
2

70
9

…

Probabilistic Accuracy: One-sided error

0

1

0

1

0

0

0

1

0

1

1

0

1

0

1

1

0

1

0

1

ℎ!

Use many hashes/filters; add each item to each filter

21
0035

02
301
7

98
1

34
2830

01
733
2

52
5
09
2

70
9

Bloom Filter: Repeated Trials

0

1

0

1

0

0

0

1

0

1

1

0

1

0

1

1

0

1

0

1

ℎ!

Use many hashes/filters; add each item to each filter

21
0035

02
301
7

98
1

34
2830

01
733
2

52
5
09
2

70
9

0

0

0

1

0

0

0

1

0

1

0

0

1

1

1

0

0

1

0

0

ℎ"

Bloom Filter: Repeated Trials

0

1

0

1

0

0

0

1

0

1

1

0

1

0

1

1

0

1

0

1

ℎ!

Use many hashes/filters; add each item to each filter

21
0035

02
301
7

98
1

34
2830

01
733
2

52
5
09
2

70
9

0

0

0

1

0

0

0

1

0

1

0

0

1

1

1

0

0

1

0

0

ℎ#ℎ"

0

1

1

1

0

0

1

1

0

1

1

0

1

0

1

1

0

1

0

1

Bloom Filter: Repeated Trials

0

1

0

1

0

0

0

1

0

1

1

0

1

0

1

1

0

1

0

1

ℎ!

0

0

0

1

0

0

0

1

0

1

0

0

1

1

1

0

0

1

0

0

ℎ"

0

1

1

1

0

0

1

1

0

1

1

0

1

0

1

1

0

1

0

1

ℎ#

0

1

1

1

1

1

0

0

0

1

0

1

0

0

1

1

1

1

1

1

ℎ$...

Use many hashes/filters; add each item to each filter

Bloom Filter: Repeated Trials

0

1

0

1

0

0

0

1

0

1

1

0

1

0

1

1

0

1

0

1

0

0

0

1

0

0

0

1

0

1

0

0

1

1

1

0

0

1

0

0

0

1

1

1

0

0

1

1

0

1

1

0

1

0

1

1

0

1

0

1

0

1

1

1

1

1

0

0

0

1

0

1

0

0

1

1

1

1

1

1

... ℎ{!,",#,...,(}(𝑦)

Bloom Filter: Repeated Trials

0

1

0

1

0

0

0

1

0

1

1

0

1

0

1

1

0

1

0

1

0

0

0

1

0

0

0

1

0

1

0

0

1

1

1

0

0

1

0

0

0

1

1

1

0

0

1

1

0

1

1

0

1

0

1

1

0

1

0

1

0

1

1

1

1

1

0

0

0

1

0

1

0

0

1

1

1

1

1

1

... ℎ{!,",#,...,(}(𝑦)

If any query yields 0,
item is not in the set

Bloom Filter: Repeated Trials

0

1

0

1

0

0

0

1

0

1

1

0

1

0

1

1

0

1

0

1

0

0

0

1

0

0

0

1

0

1

0

0

1

1

1

0

0

1

0

0

0

1

1

1

0

0

1

1

0

1

1

0

1

0

1

1

0

1

0

1

0

1

1

1

1

1

0

0

0

1

0

1

0

0

1

1

1

1

1

1

... ℎ{!,",#,...,(}(𝑦)

If all queries yield 1,
item may be in the set;
or we might have
collided k times

Bloom Filter: Repeated Trials

Using repeated trials, even a very bad filter can still have a very low FPR!

Bloom Filter: Repeated Trials

If we have 𝑘 bloom filter, each with a FPR 𝑝, what is the likelihood that all
filters return the value ‘1’ for an item we didn’t insert?

0

1

0

1

0

0

0

1

0

1

1

0

1

0

1

1

0

1

0

1

ℎ!

0

0

0

1

0

0

0

1

0

1

0

0

1

1

1

0

0

1

0

0

ℎ"

0

1

1

1

0

0

1

1

0

1

1

0

1

0

1

1

0

1

0

1

ℎ#

0

1

1

1

1

1

0

0

0

1

0

1

0

0

1

1

1

1

1

1

ℎ$...

But doesn’t this hurt our storage costs by storing 𝑘 separate filters?

Bloom Filter: Repeated Trials

Bloom Filter: Repeated Trials

0
1
2
3
4
5
6
7
8
9

h1(x) = x % 10 h2(x) = 2x % 10 h3(x) = (5+3x) % 10
S = { 6, 8, 4 }

Rather than use a new filter for each hash, one filter can use 𝑘 hashes

Bloom Filter: Repeated Trials

0 0
1 0
2 1
3 1
4 1
5 0
6 1
7 1
8 1
9 1

h1(x) = x % 10 h2(x) = 2x % 10 h3(x) = (5+3x) % 10

_find(1)

_find(16)

Rather than use a new filter for each hash, one filter can use 𝑘 hashes

Bloom Filter

0

0

1

0

0

1

0

1

0

0

A probabilistic data structure storing a set of values

Built from a bit vector of length 𝑚 and 𝑘 hash functions

Insert / Find runs in: _______________

Delete is not possible (yet)!

𝐻 = {ℎ!, ℎ", . . . , ℎ#}

Bloom Filter: Error Rate
Given bit vector of size 𝑚 and 𝑘 SUHA hash function

ℎ{!,",#,...,(}

𝑚

What is our expected FPR after 𝑛 objects are inserted?

Bloom Filter: Error Rate
Given bit vector of size 𝑚 and 1 SUHA hash function

ℎ{!,",#,...,(}

𝑚

What's the probability a specific bucket is 1 after
one object is inserted?

Same probability given 𝑘 SUHA hash function?

Bloom Filter: Error Rate
Given bit vector of size 𝑚 and 𝑘 SUHA hash function

ℎ{!,",#,...,(}

𝑚

Probability a specific bucket is 0 after one object is inserted?

After 𝑛 objects are inserted?

Bloom Filter: Error Rate
Given bit vector of size 𝑚 and 𝑘 SUHA hash function

ℎ{!,",#,...,(}

𝑚

What's the probability a specific bucket is 1 after
𝑛 objects are inserted?

Bloom Filter: Error Rate
Given bit vector of size 𝑚 and 𝑘 SUHA hash function

ℎ{!,",#,...,(}

𝑚

What is our expected FPR after 𝑛 objects are inserted?

The probability my bit is 1 after 𝑛 objects inserted

1 − 1 −
1
𝑚

+, ,

The number of [assumed independent] trials

Bloom Filter: Error Rate
Vector of size 𝑚, 𝑘 SUHA hash function, and 𝑛 objects

ℎ{",$,%,...,'}

𝑚

To minimize the FPR, do we prefer…

1 − 1 −
1
𝑚

+, ,

(A) large 𝑘 (B) small 𝑘

