Data Structures and Algorithms
Hashing 3

CS 225
G Carl Evans

I ILLINOIS

URBANA-CHAMPAIGN

April 17, 2024

Department of Computer Science

Slides by Brad Solomon

A Hash Table based Dictionary

Client Code:

1 | Dictionary<KeyType, ValueType> d;
2 |d[k] = v;

A Hash Table consists of three things:
1. A hash function

2. A data storage structure

3. A method of addressing hash collisions

Resizing a hash table

How do we resize?
h(k, i) =
22

16
29

11
13

o U A~ W N -2 O

Running Times

Find

Insert

Storage Space

Hash Function

Characteristics of a good hash function:

1. Computation Time:

2. Deterministic:

Simple Uniform Hashing Assumption

Given table of size m, a simple uniform hash, h, implies

Vkl, kz € U where kl * kz , Pr(h’[kl] — h[kz]) :;11
Uniform:

Independent:

Separate Chaining Under SUHA

Given table of size m and n inserted objects

Claim: Under SUHA, expected length of chain isﬂﬁ1

Runnin g Times (Don’t memorize these equations, no need.)
(Expectation under SUHA)
Open Hashing:

insert:

find/ remove:

Closed Hashing:

insert:

find/ remove:

Running Times (Don’t memorize these equations, no need.)
The expected number of probes for find(key) under SUHA
Linear Probing:
* Successful: %(1 +1/(1-a))
* Unsuccessful: %(1 + 1/(1-a))?
Instead, observe:

Double Hashing: - As a increases:

 Successful: 1/a * In(1/(1-a))
* Unsuccessful: 1/(1-a)

.. - If a is constant:
Separate Chaining:

* Successful: 1+ a/f2
e Unsuccessful: 1 + a

Running Times
The expected number of probes for find(key) under SUHA

Linear Probing:
* Successful: (1 + 1/(1-a))
e Unsuccessful: %(1 + 1/(1-a))?

Probes

Double Hashing:
 Successful: 1/a * In(1/(1-a))
* Unsuccessful: 1/(1-a)

When do we resize?

Probes

Which collision resolution strategy is better?
e Big Records:

e Structure Speed:
What structure do hash tables implement?

What constraint exists on hashing that doesn’t exist with
BSTs?

Why talk about BSTs at all?

Running Times

Expectation*®:

Flnd Worst Case:
Expectation®: Worst
Case:

Insert

Storage Space

std data structures

std::map
.:operator]]
::iinsert
.:erase

::lower_bound(key) = Iterator to first element < key
:upper_bound(key) = Iterator to first element > key

std data structures

std::unordered_map
.:operator]]
::insert
.:erase

* I M\\AI O a) - a a ajfalaaVala ()
-—ama U A - -

sosser—bodndlien—=""leratortorstelemertley

::load_factor()
::max_load factor(ml) = Sets the max load factor

Hashing in the real world

Even under SUHA, our estimates are in expectation.

m elements
U, Universe of Keys

Hash Table

Worst-Case behavior is bad — but what about randomness?

1) Fix h, our hash, and assume it is good for all keys:

2) Create a universal hash function family:

Hash Function (Division Method or Identity Hash)
Hash of form: h(k) = k%m

Hash Function (Mid-Square Method)

Hash of form: h(k) = (k * k) and take b middle bits where
m = 2P

Hash Function (Multiplication Method)
Hash of form: h(k) = |m(remain(kA))|, 0 <A< 1

Hash Function (Universal Hash Family) @
Pickarandom h € H s.t. Vkq1,k, € U, Pr(hlk,] = hlk,]) <

1
m

Hash Function (Universal Hash Family)
Hash of form: h,p (k) = ((ak + b)%p)%m, a,b € Z;,Z,

1
Vki # ky, Pra,b(hab k1] = haplkz]) < =

m

