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A Hash Table based Dictionary

A Hash Table consists of three things:
1. A hash function

2. A data storage structure

3. A method of addressing hash collisions

Dictionary<KeyType, ValueType> d;
d[k] = v;
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Client Code:



Resizing a hash table
How do we resize?
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Hash Function
Characteristics of a good hash function:

1. Computation Time:

2. Deterministic: 

3. …



Simple Uniform Hashing Assumption
Given table of size 𝑚, a simple uniform hash, ℎ, implies

∀𝑘!, 𝑘" ∈ 𝑈 where 𝑘! ≠ 𝑘" ,  𝑃𝑟(ℎ[𝑘!] = ℎ[𝑘"]) =
!
#

Uniform:

Independent:



A key

M slots

Separate Chaining Under SUHA

Claim: Under SUHA, expected length of chain is 
$
#

Given table of size 𝑚 and 𝑛 inserted objects



Running Times

Open Hashing:

Closed Hashing:

insert: __________.

find/ remove: __________.

insert: __________.

find/ remove: __________.

(Don’t memorize these equations, no need.)
(Expectation under SUHA)



Running Times
Linear Probing:
• Successful:  ½(1 + 1/(1-α))
• Unsuccessful: ½(1 + 1/(1-α))2

Double Hashing:
• Successful:  1/α * ln(1/(1-α))
• Unsuccessful: 1/(1-α)

Separate Chaining:
• Successful:  1 + α/2
• Unsuccessful: 1 + α

The expected number of probes for find(key) under SUHA

(Don’t memorize these equations, no need.)

Instead, observe:
- As α increases:

- If α is constant:



Running Times

Linear Probing:
• Successful:  ½(1 + 1/(1-α))
• Unsuccessful: ½(1 + 1/(1-α))2

Double Hashing:
• Successful:  1/α * ln(1/(1-α))
• Unsuccessful: 1/(1-α)

When do we resize?

The expected number of probes for find(key) under SUHA
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Which collision resolution strategy is better?
• Big Records:

• Structure Speed:

What structure do hash tables implement?

What constraint exists on hashing that doesn’t exist with 
BSTs?

Why talk about BSTs at all?
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Expectation*:

Worst Case:

Insert

Expectation*: Worst 
Case:

Storage Space



std data structures

std::map
::operator[]
::insert
::erase

::lower_bound(key) ➔ Iterator to first element ≤ key
::upper_bound(key) ➔ Iterator to first element > key



std data structures

std::unordered_map
::operator[]
::insert
::erase

::lower_bound(key) ➔ Iterator to first element ≤ key
::upper_bound(key) ➔ Iterator to first element > key

::load_factor()
::max_load_factor(ml) ➔ Sets the max load factor



Hashing in the real world

Key ValueU, Universe of Keys
m elements

Even under SUHA, our estimates are in expectation. 



Worst-Case behavior is bad — but what about randomness?

Hash Table

1) Fix h, our hash, and assume it is good for all keys:

2) Create a universal hash function family:



Hash Function (Division Method or Identity Hash)
Hash of form: ℎ(𝑘) = 𝑘%𝑚



Hash Function (Mid-Square Method)
Hash of form: ℎ(𝑘) = (𝑘 ∗ 𝑘) and take 𝑏 middle bits where 
𝑚 = 2%



Hash Function (Multiplication Method)
Hash of form: ℎ(𝑘) = ⌊𝑚(𝑟𝑒𝑚𝑎𝑖𝑛(𝑘𝐴))⌋, 0 ≤ 𝐴 ≤ 1



Hash Function (Universal Hash Family)
Pick a random ℎ ∈ 𝐻 s.t. ∀𝑘!, 𝑘" ∈ 𝑈, 𝑃𝑟(ℎ[𝑘!] = ℎ[𝑘"]) ≤

!
#



Hash Function (Universal Hash Family)
Hash of form: ℎ&%(𝑘) = (𝑎𝑘 + 𝑏)%𝑝 %𝑚, 𝑎, 𝑏 ∈ 𝑍'∗ , 𝑍'

∀𝑘! ≠ 𝑘", 𝑃𝑟&,%(ℎ&%[𝑘!] = ℎ&%[𝑘"]) ≤
!
#


