
Department of Computer Science

Data Structures and Algorithms

CS 225
G Carl Evans April 17, 2024

Hashing 3

Slides by Brad Solomon

A Hash Table based Dictionary

A Hash Table consists of three things:
1. A hash function

2. A data storage structure

3. A method of addressing hash collisions

Dictionary<KeyType, ValueType> d;
d[k] = v;

1
2

Client Code:

Resizing a hash table
How do we resize?

0 22
1 8
2 16
3 29
4 4
5 11
6 13

h(k, i) =

Running Times
Hash Table AVL Linked List

Find

Insert

Storage Space

Hash Function
Characteristics of a good hash function:

1. Computation Time:

2. Deterministic:

3. …

Simple Uniform Hashing Assumption
Given table of size 𝑚, a simple uniform hash, ℎ, implies

∀𝑘!, 𝑘" ∈ 𝑈 where 𝑘! ≠ 𝑘" , 𝑃𝑟(ℎ[𝑘!] = ℎ[𝑘"]) =
!
#

Uniform:

Independent:

A key

M slots

Separate Chaining Under SUHA

Claim: Under SUHA, expected length of chain is
$
#

Given table of size 𝑚 and 𝑛 inserted objects

Running Times

Open Hashing:

Closed Hashing:

insert: __________.

find/ remove: __________.

insert: __________.

find/ remove: __________.

(Don’t memorize these equations, no need.)
(Expectation under SUHA)

Running Times
Linear Probing:
• Successful: ½(1 + 1/(1-α))
• Unsuccessful: ½(1 + 1/(1-α))2

Double Hashing:
• Successful: 1/α * ln(1/(1-α))
• Unsuccessful: 1/(1-α)

Separate Chaining:
• Successful: 1 + α/2
• Unsuccessful: 1 + α

The expected number of probes for find(key) under SUHA

(Don’t memorize these equations, no need.)

Instead, observe:
- As α increases:

- If α is constant:

Running Times

Linear Probing:
• Successful: ½(1 + 1/(1-α))
• Unsuccessful: ½(1 + 1/(1-α))2

Double Hashing:
• Successful: 1/α * ln(1/(1-α))
• Unsuccessful: 1/(1-α)

When do we resize?

The expected number of probes for find(key) under SUHA

Pr

ob
es

Pr

ob
es

α

α

Which collision resolution strategy is better?
• Big Records:

• Structure Speed:

What structure do hash tables implement?

What constraint exists on hashing that doesn’t exist with
BSTs?

Why talk about BSTs at all?

Running Times
Hash Table AVL Linked List

Find

Expectation*:

Worst Case:

Insert

Expectation*: Worst
Case:

Storage Space

std data structures

std::map
::operator[]
::insert
::erase

::lower_bound(key) ➔ Iterator to first element ≤ key
::upper_bound(key) ➔ Iterator to first element > key

std data structures

std::unordered_map
::operator[]
::insert
::erase

::lower_bound(key) ➔ Iterator to first element ≤ key
::upper_bound(key) ➔ Iterator to first element > key

::load_factor()
::max_load_factor(ml) ➔ Sets the max load factor

Hashing in the real world

Key ValueU, Universe of Keys
m elements

Even under SUHA, our estimates are in expectation.

Worst-Case behavior is bad — but what about randomness?

Hash Table

1) Fix h, our hash, and assume it is good for all keys:

2) Create a universal hash function family:

Hash Function (Division Method or Identity Hash)
Hash of form: ℎ(𝑘) = 𝑘%𝑚

Hash Function (Mid-Square Method)
Hash of form: ℎ(𝑘) = (𝑘 ∗ 𝑘) and take 𝑏 middle bits where
𝑚 = 2%

Hash Function (Multiplication Method)
Hash of form: ℎ(𝑘) = ⌊𝑚(𝑟𝑒𝑚𝑎𝑖𝑛(𝑘𝐴))⌋, 0 ≤ 𝐴 ≤ 1

Hash Function (Universal Hash Family)
Pick a random ℎ ∈ 𝐻 s.t. ∀𝑘!, 𝑘" ∈ 𝑈, 𝑃𝑟(ℎ[𝑘!] = ℎ[𝑘"]) ≤

!
#

Hash Function (Universal Hash Family)
Hash of form: ℎ&%(𝑘) = (𝑎𝑘 + 𝑏)%𝑝 %𝑚, 𝑎, 𝑏 ∈ 𝑍'∗ , 𝑍'

∀𝑘! ≠ 𝑘", 𝑃𝑟&,%(ℎ&%[𝑘!] = ℎ&%[𝑘"]) ≤
!
#

