
Department of Computer Science

Data Structures and Algorithms

CS 225
G Carl Evans April 9, 2023

Probability in Computer Science

Slides by Brad Solomon

𝐸[𝑋 + 𝑌] = ∑
!
𝑥 ⋅ 𝑃𝑟{𝑋 = 𝑥} + ∑

"
𝑦 ⋅ 𝑃𝑟{𝑌 = 𝑦}

Fundamentals of Probability (Correction)
Linearity of Expectation: For any two random variables 𝑋 and 𝑌,
𝐸[𝑋 + 𝑌] = 𝐸[𝑋] + 𝐸[𝑌]
𝐸[. 	 = ∑

!
∑
"
(𝑥 + 𝑦)𝑃𝑟{𝑋 = 𝑥, 𝑌 = 𝑦}

𝐸[𝑋 + 𝑌] = ∑
!
𝑥∑
"
𝑃𝑟{𝑋 = 𝑥, 𝑌 = 𝑦} + ∑

"
𝑦∑
!
𝑃𝑟{𝑋 = 𝑥, 𝑌 = 𝑦}

does not depend on independence!

Randomization in Algorithms
1. Assume input data is random to estimate average-case performance

2. Use randomness inside algorithm to estimate expected running time

3. Use randomness inside algorithm to approximate solution in fixed time

Average-Case Analysis: BST
Let 𝑆(𝑛) be the average total internal path length over all BSTs
that can be constructed by uniform random insertion of 𝑛 objects
Claim: 𝑆(𝑛) is 𝑂(𝑛 log 𝑛)
N=0: N=1:

Average-Case Analysis: BST
Let 𝑆(𝑛) be the average total internal path length over all BSTs
that can be constructed by uniform random insertion of 𝑛 objects

31

2

31

23

1

2

2

1

3

1

3

2

2

3

1

N=3:

Average-Case Analysis: BST
Let 𝑆(𝑛) be the average total internal path length over all BSTs
that can be constructed by uniform random insertion of 𝑛 objects
Let 0 ≤ 𝑖 ≤ 𝑛 − 1 be the number of nodes in the left subtree.

Then for a fixed 𝑖, 𝑆(𝑛) = (𝑛 − 1) + 𝑆(𝑖) + 𝑆(𝑛 − 𝑖 − 1)

Average-Case Analysis: BST

𝑆(𝑛) = (𝑛 − 1) +
1
𝑛 ∑
#$%

&'(
𝑆(𝑖) + 𝑆(𝑛 − 𝑖 − 1)

Let 𝑆(𝑛) be the average total internal path length over all BSTs
that can be constructed by uniform random insertion of 𝑛 objects

Average-Case Analysis: BST

𝑆(𝑛) = (𝑛 − 1) +
2
𝑛 ∑
#$(

&'(
𝑆(𝑖)

𝑆(𝑛) ≤ (𝑛 − 1) +
2
𝑛
A

(

&
(𝑐𝑥 ln 𝑥)𝑑𝑥

𝑆(𝑛) = (𝑛 − 1) +
2
𝑛E

#$(

&'(

(𝑐𝑖 ln 𝑖)

𝑆 𝑛 ≤ 𝑛 − 1 +
2
𝑛

𝑐𝑛)

2 ln 𝑛 −
𝑐𝑛)

4 +
𝑐
4 ≈ 𝑐𝑛 ln 𝑛

Average-Case Analysis: BST

Summary: All operations are on average 𝑂(𝑙𝑜𝑔𝑛)

Randomness:

Assumptions:

6 1 0 3 7 9 2 4

1 0 3 2 4 9 6 7

1 0 3 2 4 9 6 7

1 0 2 3 4 6 7 9

1 0 2 3 4 6 7 9

0 1 2 3 4 6 7 9

Expectation Analysis: Randomized Quicksort

6 1 0 3 7 9 2 4

1 0 3 2 4 9 6 7

1 0 3 2 4 9 6 7

1 0 2 3 4 6 7 9

1 0 2 3 4 6 7 9

0 1 2 3 4 6 7 9

Expectation Analysis: Randomized Quicksort

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

…

Expectation Analysis: Randomized Quicksort
In randomized quicksort, the selection of the pivot is random.

Claim: The expected comparisons is 𝑂(𝑛 log 𝑛 𝑛) for any input!

Let 𝑋 be the total comparisons and 𝑋#* be an indicator variable:

𝑋#* = {
1if	𝑖th	object	compared	to	𝑗th
0	if	𝑖th	object	not	compared	to	𝑗th

Then…

Key Ideas

1. Never compare 𝑋! with 𝑋!

2. Never compare 𝑋! and 𝑋" more than once

Expectation Analysis: Randomized Quicksort

Claim: 𝐸[𝑋#*] =
)

*'#+(

Base Case: (N=2)

Expectation Analysis: Randomized Quicksort

Claim: 𝐸[𝑋#,*] =
)

*'#+(Induction: Assume true for all inputs of < 𝑛

Expectation Analysis: Randomized Quicksort

𝐸[𝑋] = ∑
#$(

&
∑

*$#+(

&
𝐸[𝑋#*] 𝐸[𝑋#*] =

2
𝑗 − 𝑖 + 1

Expectation Analysis: Randomized Quicksort

𝐸[𝑋] = ∑
#$(

&
∑

*$#+(

&
𝐸[𝑋#*] 𝐸[𝑋#*] =

2
𝑗 − 𝑖 + 1

𝐸[𝑋] = ∑
#$(

&
2(
1
2
+
1
3
+. . . +

1
𝑛 − 𝑖 + 1

)

𝐸 𝑋 =E

#$(

&

2 𝐻&'(− 1 	≤ 	 2𝑛 ⋅ 𝐻& ≤ 2𝑛	𝑙𝑛	𝑛

Expectation Analysis: Randomized Quicksort
Summary: Randomized quick sort is 𝑂(𝑛𝑙𝑜𝑔𝑛) regardless of
input

Randomness:

Assumptions:

Probabilistic Accuracy: Fermat primality test

If 𝑝 is prime and 𝑎 is not divisible by 𝑝, then 𝑎-'(≡ 1(mod	𝑝)
But… sometimes if 𝑛 is composite and 𝑎&'(≡ 1(mod	𝑛)

Pick a random 𝑎 in the range [2, 𝑝 − 2]

Probabilistic Accuracy: Fermat primality test
𝑎#$% ≡ 1(mod	𝑝) 𝑎#$% ≢ 1(mod	𝑝)

𝑝 is prime

𝑝 is not prime

Probabilistic Accuracy: Fermat primality test
Let’s assume 𝛼 = .5

First trial: 𝑎 = 𝑎% and prime test returns ‘prime!’

Is our number prime?

Second trial: 𝑎 = 𝑎(and prime test returns ‘prime!’

Third trial: 𝑎 = 𝑎) and prime test returns ‘not prime!’

What is our false positive probability? Our false negative probability?

Probabilistic Accuracy: Fermat primality test
Summary: Randomized algorithms can also have fixed (or
bounded) runtimes at the cost of probabilistic accuracy.

Randomness:

Assumptions:

Types of randomized algorithms
A Las Vegas algorithm is a randomized algorithm which will
always give correct answer if run enough times but has no fixed
runtime.
A Monte Carlo algorithm is a randomized algorithm which will run
a fixed number of iterations and may give the correct answer.

Next Class: Randomized Data Structures
Sometimes a data structure can be too ordered / too structured

Randomized data structures rely on expected performance

Randomized data structures ‘cheat’ tradeoffs!

