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Learning Objectives

Review fundamentals of probability in computing

Distinguish the three main types of ‘random’ in computer science

Formalize the concept of randomized algorithms



Randomized Algorithms
A randomized algorithm is one which uses a source of 
randomness somewhere in its implementation.
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Quick Primes with Fermat’s Primality Test
If 𝑝 is prime and 𝑎 is not divisible by 𝑝, then 𝑎!"# ≡ 1(mod	𝑝)
But… sometimes if 𝑛 is composite and 𝑎$"# ≡ 1(mod	𝑛)



Fundamentals of Probability
Imagine you roll a pair of six-sided dice.
The sample space Ω is the set of all possible outcomes.

An event 𝐸 ⊆ Ω is any subset.



Fundamentals of Probability
Imagine you roll a pair of six-sided dice. What is the expected value?
A random variable is a function from events to numeric values.

The expectation of a (discrete) random variable is:

𝐸[𝑋] = ∑
%∈'

𝑃𝑟{𝑋 = 𝑥} ⋅ 𝑥



Fundamentals of Probability
Imagine you roll a pair of six-sided dice. What is the expected value?

𝐸 𝑋 + 𝑌 =	?



Fundamentals of Probability
Imagine you roll a pair of six-sided dice. What is the expected value?
Linearity of Expectation: For any two random variables 𝑋 and 𝑌,
𝐸[𝑋 + 𝑌] = 𝐸[𝑋] + 𝐸[𝑌]



𝐸[𝑋 + 𝑌] = ∑
%
𝑥 ⋅ 𝑃𝑟{𝑋 = 𝑥} + ∑

(
𝑦 ⋅ 𝑃𝑟{𝑌 = 𝑦}

Fundamentals of Probability
Imagine you roll a pair of six-sided dice. What is the expected value?
Linearity of Expectation: For any two random variables 𝑋 and 𝑌,
𝐸[𝑋 + 𝑌] = 𝐸[𝑋] + 𝐸[𝑌]

𝐸[𝑋 + 𝑌] = ∑
%
∑
(
(𝑥 + 𝑦)𝑃𝑟{𝑋 = 𝑥, 𝑌 = 𝑦}

𝐸[𝑋 + 𝑌] = ∑
%
𝑥∑
(
𝑃𝑟{𝑋 = 𝑥, 𝑌 = 𝑦} + ∑

(
𝑦∑
%
𝑃𝑟{𝑋 = 𝑥, 𝑌 = 𝑦}



Randomization in Algorithms
1. Assume input data is random to estimate average-case performance

2. Use randomness inside algorithm to estimate expected running time

3. Use randomness inside algorithm to approximate solution in fixed time



Average-Case Analysis: BST
R

RL
Smallest Largest



Average-Case Analysis: BST
Let 𝑆(𝑛) be the average total internal path length over all BSTs 
that can be constructed by uniform random insertion of 𝑛 objects
Claim: 𝑆(𝑛) is 𝑂(𝑛 log 𝑛)
N=0: N=1:



Average-Case Analysis: BST
Let 𝑆(𝑛) be the average total internal path length over all BSTs 
that can be constructed by uniform random insertion of 𝑛 objects
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Average-Case Analysis: BST
Let 𝑆(𝑛) be the average total internal path length over all BSTs 
that can be constructed by uniform random insertion of 𝑛 objects

IH	for	all	0 ≤ 𝑘 < 𝑛	 𝑆(𝑘) is 𝑂(𝑘 log 𝑘)



Average-Case Analysis: BST
Let 𝑆(𝑛) be the average total internal path length over all BSTs 
that can be constructed by uniform random insertion of 𝑛 objects
Let 0 ≤ 𝑖 ≤ 𝑛 − 1 be the number of nodes in the left subtree.

Then for a fixed 𝑖, 𝑆(𝑛) = (𝑛 − 1) + 𝑆(𝑖) + 𝑆(𝑛 − 𝑖 − 1)



Average-Case Analysis: BST

𝑆(𝑛) = (𝑛 − 1) +
1
𝑛 ∑
)*#

$"#
𝑆(𝑖) + 𝑆(𝑛 − 𝑖 − 1)

Let 𝑆(𝑛) be the average total internal path length over all BSTs
that can be constructed by uniform random insertion of 𝑛 objects



Average-Case Analysis: BST

𝑆(𝑛) = (𝑛 − 1) +
2
𝑛 ∑
)*#

$"#
𝑆(𝑖)

𝑆(𝑛) ≤ (𝑛 − 1) +
2
𝑛
H

#

$
(𝑐𝑥 ln 𝑥)𝑑𝑥

𝑆(𝑛) = (𝑛 − 1) +
2
𝑛L

)*#

$"#

(𝑐𝑖 ln 𝑖)

𝑆 𝑛 ≤ 𝑛 − 1 +
2
𝑛

𝑐𝑛+

2 ln 𝑛 −
𝑐𝑛+

4 +
𝑐
4 ≈ 𝑐𝑛 ln 𝑛



Average-Case Analysis: BST
Let 𝑆(𝑛) be the average total internal path length over all BSTs 
that can be constructed by uniform random insertion of 𝑛 objects
Since 𝑆(𝑛) is 𝑂(𝑛 log 𝑛), if we assume we are randomly 
choosing a node to insert, find, or delete* then each operation 
takes:



Average-Case Analysis: BST

Summary: All operations are on average 𝑂(𝑙𝑜𝑔𝑛)

Randomness:

Assumptions:
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1 0 3 2 4 9 6 7
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0 1 2 3 4 6 7 9

Expectation Analysis: Randomized Quicksort
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Expectation Analysis: Randomized Quicksort
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Expectation Analysis: Randomized Quicksort
In randomized quicksort, the selection of the pivot is random.

Claim: The expected time is 𝑂(𝑛 log 𝑛) for any input!



Expectation Analysis: Randomized Quicksort
In randomized quicksort, the selection of the pivot is random.

Claim: The expected time is 𝑂(𝑛 log 𝑛) for any input!

Let 𝑋 be the total comparisons and 𝑋), be an indicator variable:

𝑋), = {
1	if	𝑖th	object	compared	to	𝑗th
0	if	𝑖	object not compared to	𝑗th

Then…



Expectation Analysis: Randomized Quicksort

Claim: 𝐸[𝑋),,] =
+

,").#
. 

Base Case: (N=2)



Expectation Analysis: Randomized Quicksort

Claim: 𝐸[𝑋),,] =
+

,").# Induction: Assume true for all inputs of < 𝑛



Expectation Analysis: Randomized Quicksort

𝐸[𝑋] = ∑
)*/

$"#
∑

,*).#

$"#
𝐸[𝑋),] 𝐸[𝑋),] =

2
𝑗 − 𝑖 + 1



Expectation Analysis: Randomized Quicksort

𝐸[𝑋] = ∑
)*#

$
∑
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$
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𝑛 − 𝑖 + 1

)

𝐸[𝑋] = ∑
)*#

$
2(𝐻$"# − 1) ≤ 2𝑛 ⋅ 𝐻$ ≤ 2𝑛𝑙𝑛𝑛



Expectation Analysis: Randomized Quicksort
Summary: Randomized quick sort is 𝑂(𝑛𝑙𝑜𝑔𝑛) regardless of 
input

Randomness:

Assumptions:


