
CS 225
Data Structures

April 10 – Floyd-Warshall’s Algorithm
G Carl Evans

Monday

Exam 3 Review

You are working on an editor and have been asked to implement an
undo feature. This feature should store all the edits that have been
made to the file since the last time it was saved. You want to be able to
save edits and remove edits if they have been undone. You can assume
that there is some object that holds a single edit and you have to store
that in your data structure.

Exam 3 Review

You are working for a financial system and are building a system to
handle transactions that are happening. Transactions will all have a
unique id number that will be used to track them. Users will be able to
add, query the status of, and delete transactions. You can assume that
the system you're running on has enough memory to store all
transactions in memory.

Exam 3 Review

You are working on a small embedded system and have only a fixed
amount of memory to work with. You need to build a system that
buffers requests for information in case more come in than can be
handled in a given time. The requests need to be handled in order that
they are received. If more requests are received than you have space
for you can ignore them.

Exam 3 Review

You are working on a storage system for a new social media site where
you will store users' video game clips. You will need to handle the
storage of 100s of clips for millions of users. The users will be able to
add and search for clips but not remove them. You will not be able to
fit everything in memory.

Exam 3 Review

You are working on a logging system which logs transactions by time
stamp for a business. You will need to handle adding transactions as
quickly as possible on average this is the most important constraint.
You will also need to allow people to look up the transactions between
two times.

Floyd-Warshall Algorithm
Floyd-Warshall’s Algorithm is an alterative to Dijkstra
in the presence of negative-weight edges (not
negative weight cycles).

FloydWarshall(G):
 Let d be a adj. matrix initialized to +inf
 foreach (Vertex v : G):
 d[v][v] = 0
 foreach (Edge (u, v) : G):
 d[u][v] = cost(u, v)

 foreach (Vertex w : G):
 foreach (Vertex u : G):
 foreach (Vertex v : G):
 if (d[u, v] > d[u, w] + d[w, v])
 d[u, v] = d[u, w] + d[w, v]

6
7
8
9
10
11
12
13
14
15
16

Floyd-Warshall Algorithm
FloydWarshall(G):
 Let d be a adj. matrix initialized to +inf
 foreach (Vertex v : G):
 d[v][v] = 0
 foreach (Edge (u, v) : G):
 d[u][v] = cost(u, v)

 foreach (Vertex w : G):
 foreach (Vertex u : G):
 foreach (Vertex v : G):
 if d[u, v] > d[u, w] + d[w, v]:
 d[u, v] = d[u, w] + d[w, v]

6
7
8
9
10
11
12
13
14
15
16

A B C D

A

B

C

D

A
C

D

B

3
-1

2

4

-2

Floyd-Warshall Algorithm
A B C D

A 0 -1 ∞ ∞

B ∞ 0 4 3

C ∞ ∞ 0 -2

D 2 ∞ ∞ 0

12
13
14
15
16

foreach (Vertex k : G):
 foreach (Vertex u : G):
 foreach (Vertex v : G):
 if d[u, v] > d[u, k] + d[k, v]:
 d[u, v] = d[u, k] + d[k, v]

A
C

D

B

3
-1

2

4

-2

Floyd-Warshall Algorithm
A B C D

A 0 -1 ∞ ∞

B ∞ 0 4 3

C ∞ ∞ 0 -2

D 2 ∞ ∞ 0

A
C

D

B

3
-1

2

4

-2

Let us consider k=A:

B C

B D

4

3

foreach (Vertex k : G):
 foreach (Vertex u : G):
 foreach (Vertex v : G):
 if d[u, v] > d[u, k] + d[k, v]:
 d[u, v] = d[u, k] + d[k, v]

12
13
14
15
16

B CAvs. +∞

B DA +∞vs.

C B

C D

+∞

-2

C BAvs. +∞

C DA +∞vs.

D B

D C

+∞ D BAvs.

D CAvs.+∞

Floyd-Warshall Algorithm
A B C D

A 0 -1 ∞ ∞

B ∞ 0 4 3

C ∞ ∞ 0 -2

D 2 1 ∞ 0

A
C

D

B

3
-1

2

4

-2

foreach (Vertex k : G):
 foreach (Vertex u : G):
 foreach (Vertex v : G):
 if d[u, v] > d[u, k] + d[k, v]:
 d[u, v] = d[u, k] + d[k, v]

12
13
14
15
16

1

Floyd-Warshall Algorithm
A B C D

A 0 -1 ∞ ∞

B ∞ 0 4 3

C ∞ ∞ 0 -2

D 2 1 ∞ 0

A
C

D

B

3
-1

2

4

-2

Let us consider k=B:

A C

A D

foreach (Vertex u : G):
 foreach (Vertex v : G):
 foreach (Vertex k : G):
 if d[u, v] > d[u, k] + d[k, v]:
 d[u, v] = d[u, k] + d[k, v]

12
13
14
15
16

A CBvs.

A DBvs.

C A

C D

C ABvs.

C DBvs.

D A

D C

D ABvs.

D CBvs.

1

Floyd-Warshall Algorithm
FloydWarshall(G):
 Let d be a adj. matrix initialized to +inf
 foreach (Vertex v : G):
 d[v][v] = 0
 foreach (Edge (u, v) : G):
 d[u][v] = cost(u, v)

 foreach (Vertex w : G):
 foreach (Vertex u : G):
 foreach (Vertex v : G):
 if d[u, v] > d[u, w] + d[w, v]:
 d[u, v] = d[u, w] + d[w, v]

6
7
8
9
10
11
12
13
14
15
16

A B C D

A

B

C

D

A
C

D

B

3
-1

2

4

-2

A B C D

A

B

C

D

Floyd-Warshall Algorithm
Running Time?

FloydWarshall(G):
 Let d be a adj. matrix initialized to +inf
 foreach (Vertex v : G):
 d[v][v] = 0
 foreach (Edge (u, v) : G):
 d[u][v] = cost(u, v)

 foreach (Vertex u : G):
 foreach (Vertex v : G):
 foreach (Vertex w : G):
 if d[u, v] > d[u, w] + d[w, v]:
 d[u, v] = d[u, w] + d[w, v]

6
7
8
9
10
11
12
13
14
15
16

Deterministic Data Structures

List

ADT
oInsert

oRemove

oAccess

oIsEmpty

Trees

ADT?
oInsert

oFind

oTraversal

• Binary

• Binary Search

• Balanced Binary Search

• Btree

Special Trees

• kDTree

• Huffman Tree

• Heap

• Up Trees

Graphs
• Edge List

• Adjacency Matrix

• Adjacency List

Graph Algorithms

• Traversal

• MST

• Shortest Path

