March 29 – Minimum Spanning Tree (Prim)

G Carl Evans
Graphs

To study all of these structures:
1. A common vocabulary
2. Graph implementations
3. Graph traversals
4. Graph algorithms
Minimum Spanning Tree Algorithms

Input: Connected, undirected graph G with edge weights (unconstrained, but must be additive)

Output: A graph G' with the following properties:
- G' is a spanning graph of G
- G' is a tree (connected, acyclic)
- G' has a minimal total weight among all spanning trees
Partition Property

Consider an arbitrary partition of the vertices on G into two subsets U and V.

Let e be an edge of minimum weight across the partition.

Then e is part of some minimum spanning tree.
Partition Property

The partition property suggests an algorithm:
Prim’s Algorithm

PrimMST(G, s):
1. Input: G, Graph;
2. Output: T, a minimum spanning tree (MST) of G
3. s, vertex in G, starting vertex

foreach (Vertex v : G):
4. d[v] = +inf
5. p[v] = NULL
6. d[s] = 0
7. PriorityQueue Q // min distance, defined by d[v]
8. Q.buildHeap(G.vertices())
9. Graph T // "labeled set"
10. repeat n times:
11. Vertex m = Q.removeMin()
12. T.add(m)
13. foreach (Vertex v : neighbors of m not in T):
14. if cost(v, m) < d[v]:
15. d[v] = cost(v, m)
16. p[v] = m
17. return T
PrimMST(G, s):
 Input: G, Graph;
 s, vertex in G, starting vertex
 Output: T, a minimum spanning tree (MST) of G

foreach (Vertex v : G):
 d[v] = +inf
 p[v] = NULL
 d[s] = 0

PriorityQueue Q // min distance, defined by d[v]
Q.buildHeap(G.vertices())
Graph T // "labeled set"

repeat n times:
 Vertex m = Q.removeMin()
 T.add(m)
 foreach (Vertex v : neighbors of m not in T):
 if cost(v, m) < d[v]:
 d[v] = cost(v, m)
 p[v] = m

return T
Prim’s Algorithm

```
6  PrimMST(G, s):
7      foreach (Vertex v : G):
8          d[v] = +inf
9          p[v] = NULL
10         d[s] = 0
11
12         PriorityQueue Q // min distance, defined by d[v]
13         Q.buildHeap(G.vertices())
14         Graph T         // "labeled set"
15
16         repeat n times:
17             Vertex m = Q.removeMin()
18             T.add(m)
19             foreach (Vertex v : neighbors of m not in T):
20                 if cost(v, m) < d[v]:
21                     d[v] = cost(v, m)
22                     p[v] = m
```
Prim’s Algorithm

Sparse Graph:

```java
int n, m; // number of vertices, edges

PrimMST(G, s):
    foreach (Vertex v : G):
        d[v] = +inf
        p[v] = NULL
    d[s] = 0
    PriorityQueue Q // min distance, defined by d[v]
    Q.buildHeap(G.vertices())
    Graph T // "labeled set"
    repeat n times:
        Vertex m = Q.removeMin()
        T.add(m)
        foreach (Vertex v : neighbors of m not in T):
            if cost(v, m) < d[v]:
                d[v] = cost(v, m)
                p[v] = m
```

Dense Graph:

```java
int n, m; // number of vertices, edges

PrimMST(G, s):
    foreach (Vertex v : G):
        d[v] = +inf
        p[v] = NULL
    d[s] = 0
    PriorityQueue Q // min distance, defined by d[v]
    Q.buildHeap(G.vertices())
    Graph T // "labeled set"
    repeat n times:
        Vertex m = Q.removeMin()
        T.add(m)
        foreach (Vertex v : neighbors of m not in T):
            if cost(v, m) < d[v]:
                d[v] = cost(v, m)
                p[v] = m
```

<table>
<thead>
<tr>
<th></th>
<th>Adj. Matrix</th>
<th>Adj. List</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heap</td>
<td>$O(n \log(n) + n^2 \log(n))$</td>
<td>$O(n \log(n) + m \log(n))$</td>
</tr>
<tr>
<td>Unsorted Array</td>
<td>$O(n^2)$</td>
<td>$O(n^2)$</td>
</tr>
</tbody>
</table>
MST Algorithm Runtime:
We know that MSTs are always run on a minimally connected graph:

\[n-1 \leq m \leq \frac{n(n-1)}{2} \]

\[O(n) \leq O(m) \leq O(n^2) \]
MST Algorithm Runtime:

- Kruskal’s Algorithm: \(O(n + m \lg(n))\)
- Prim’s Algorithm: \(O(n \lg(n) + m \lg(n))\)

Sparse Graph:

Dense Graph:
Suppose I have a new heap:

<table>
<thead>
<tr>
<th></th>
<th>Binary Heap</th>
<th>Fibonacci Heap</th>
</tr>
</thead>
<tbody>
<tr>
<td>Remove Min</td>
<td>$O(\lg(n))$</td>
<td>$O(\lg(n))$</td>
</tr>
<tr>
<td>Decrease Key</td>
<td>$O(\lg(n))$</td>
<td>$O(1)^*$</td>
</tr>
</tbody>
</table>

What’s the updated running time?

```
PrimMST(G, s):
6    foreach (Vertex v : G):
7        d[v] = +inf
8        p[v] = NULL
9        d[s] = 0
10
11    PriorityQueue Q // min distance, defined by d[v]
12    Q.buildHeap(G.vertices())
13    Graph T       // "labeled set"
14
15    repeat n times:
16        Vertex m = Q.removeMin()
17        T.add(m)
18    foreach (Vertex v : neighbors of m not in T):
19        if cost(v, m) < d[v]:
20            d[v] = cost(v, m)
21            p[v] = m
```
MST Algorithm Runtimes:

• Kruskal’s Algorithm: \(O(m \ lg(n))\)

• Prim’s Algorithm: \(O(n \ lg(n) + m \ lg(n))\)
Shortest Path