March 7 – Disjoint Sets and Iterators

G Carl Evans
Disjoint Sets

- Red set: 2 5 9
- Blue set: 7
- Purple set: 0 1 4 8
- Yellow set: 3 6

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>8</td>
<td>5</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>3</td>
<td>-1</td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>
Disjoint Sets – Smart Union

Idea: Keep the height of the tree as small as possible.

Idea: Minimize the number of nodes that increase in height.

We will show the height of the tree is: \(\log(n)\).
Union by Size

To show that every tree in a disjoint set data structure using union by size has a height of at most $O(\log n)$ we will show that the inverse.

Base Case

Inductive Hypothesis
Union by Size

Case 1
Union by Size

Case 2
Union by Height

Much like before we will show the min(nodes) in a tree with a root of height $k \geq 2^k$

Base Case

IH
Disjoint Sets Find

```cpp
int DisjointSets::find(int i) {
    if ( s[i] < 0 ) { return i; }
    else { return find( s[i] ); }
}
```
Path Compression
Union by Height - Rank

Base

New UpTrees have Rank =

When you join two UpTrees
Union by Rank

1. For all non-root nodes x, $\text{rank}(x) < \text{rank}(\text{parent}(x))$

2. Rank only changes for roots and only up
Disjoint Sets Analysis

The iterated log function:

The number of times you can take a log of a number.

\[
\log^*(n) =
\begin{align*}
0 & , \ n \leq 1 \\
1 + \log^*(\log(n)) & , \ n > 1
\end{align*}
\]

What is \(\log^*(2^{65536})\)?
Disjoint Sets Analysis

In an Disjoint Sets implemented with smart unions and path compression on find:

Any sequence of m union and find operations result in the worse case running time of O(__________), where n is the number of items in the Disjoint Sets.