CS 225
Data Structures

March 6 – Disjoint Sets
G Carl Evans
Disjoint Sets
Disjoint Sets

Operation: find(4)
Disjoint Sets

Operation: find(4) == find(8)
Disjoint Sets

Key Ideas:
- Each element exists in exactly one set.
- Every set is an equitant representation.
 - Mathematically: $4 \in [0]_R \Rightarrow 8 \in [0]_R$
 - Programmatically: `find(4) == find(8)`
Disjoint Sets ADT

• Maintain a collection $S = \{s_0, s_1, \ldots, s_k\}$

• Each set has a representative member.

• API:
 void makeSets(int number);
 void union(int k1, const int k2);
 int find(int k);
Implementation #1

Find(k):

Union(k1, k2):
YOU EXPECTED A NEW DATA STRUCTURE

BUT IT WAS ME, TREE ALL ALONG
Implementation #2

Find(k):

Union(k1, k2):
Implementation #2

- We will continue to use an array where the index is the key.

- The value of the array is:
 - -1, if we have found the representative element
 - The index of the parent, if we haven’t found the rep. element

- We will call these UpTrees:

```
<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
</tr>
</tbody>
</table>
```

```
Disjoint Sets

Find(k):

Union(k1, k2):
Disjoint Sets Find

```cpp
int DisjointSets::find(int i) {
 if (s[i] < 0) { return i; }
 else { return find(s[i]); }
}
```

Running time?

What is the ideal UpTree?
Disjoint Sets Union

```cpp
void DisjointSets::union(int r1, int r2) {
}
```
Disjoint Sets – Union

```
<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>6</td>
<td>6</td>
<td>8</td>
<td>-1</td>
<td>10</td>
<td>7</td>
<td>-1</td>
<td>7</td>
<td>7</td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>
```
Disjoint Sets – Smart Union

Union by height

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>8</td>
<td>10</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Idea: Keep the height of the tree as small as possible.
Disjoint Sets – Smart Union

**Union by size**

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>8</td>
<td>10</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>4</td>
<td>5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Idea*: Keep the height of the tree as small as possible.
Disjoint Sets – Smart Union

<table>
<thead>
<tr>
<th>Union by height</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>8</td>
<td>10</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>4</td>
<td>5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Idea:** Keep the height of the tree as small as possible.

<table>
<thead>
<tr>
<th>Union by size</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>8</td>
<td>10</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>4</td>
<td>5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Idea:** Minimize the number of nodes that increase in height.

Both guarantee the height of the tree is: ______________.
Disjoint Sets Find

```cpp
int DisjointSets::find(int i) {
 if (s[i] < 0) { return i; }
 else { return find(s[i]); }
}
```

```cpp
void DisjointSets::unionBySize(int root1, int root2) {
 int newSize = arr_[root1] + arr_[root2];

 // If arr_[root1] is less than (more negative), it is the larger set;
 // we union the smaller set, root2, with root1.
 if (arr_[root1] < arr_[root2]) {
 arr_[root2] = root1;
 arr_[root1] = newSize;
 }

 // Otherwise, do the opposite:
 else {
 arr_[root1] = root2;
 arr_[root2] = newSize;
 }
}
```
Path Compression
Disjoint Sets Analysis

The **iterated log** function:

*The number of times you can take a log of a number.*

\[
\log^*(n) = \\
0, \quad n \leq 1 \\
1 + \log^*(\log(n)), \quad n > 1
\]

What is \( \lg^*(2^{65536}) \)?
Disjoint Sets Analysis

In a Disjoint Sets implemented with smart **unions** and path compression on **find**:

Any sequence of **m union** and **find** operations result in the worse case running time of $O(\text{___________} )$, where $n$ is the number of items in the Disjoint Sets.