CS 225

Data Structures

February 23 — BBST Range Search

G Carl Evans

Range-based Searches

Balanced BSTs are useful structures for range-based and
nearest-neighbor searches.

Q: Consider points in 1D: p ={p1, P2, «--» Pn}-
..what points fall in [11, 42]?

Range-based Searches

Q: Consider points in 1D: p ={p1, P2, «--» Pn}-
..what points fall in [11, 42]?

Red-Black Trees in C++

iterator std: :map<K, V>::lower bound(const K &);
iterator std: :map<K, V>::upper bound(const K &);

Range-based Searches

Consider points in 2D: p ={p1, P2, «--» Pn}-

Q: What points are in the rectangle:
[(xlr yl)l (XZr yZ)]?

Q: What is the nearest point to (x4, y4)?

o
P2 o o
Ps Pe
o
P1
)
P3 ()

Range-based Searches
Consider points in 2D: p ={p1, P2, «--» Pn}-

Tree construction:

o
P2 o o
Ps Pe
o
P1
)
P3 ()

Nearest Neighbor — k-d Tree

(4.2)

}S,q) (q (o)

2% @@ G, l) (‘i%)

[

© = MWL U HN\ND

Ll

o1 23450+ 859w

Nearest Neighbor - demo

(1, e

}Sn") (Q (0)

2 @G l) (q %)

N MWL NI S
_~
<=
F

t t

349&1—%“1’10

Nearest Neighbor - demo

“
(112) 3. 0 l
}Sn") (Q (0) ;
@y §)6EH Gy |

o|234§b1-%'4’w

Nearest Neighbor - demo

(1’ 2) Cuw eSSy = (2‘3)

}S,H) (‘i (0)

€» @9 (8) @9

© = MWL O NNDD T

Nearest Neighbor - demo

Backtracking: start recursing backwards -- store “best” possibility as you trace back

W?
(1_ 2) Cur st = (5,H) 2 |
: PR . ' -
PR R ‘;
2» @EH6H @y |

0‘234901’?“1‘0

Nearest Neighbor - demo

(0
q?

¢ 4
%

@ —
5

Y

3 i 4

2 @

|

X [

ol234901'%"i’u>

Nearest Neighbor - demo

On ties, use smallerDimval to determine which point remains curBest

“
- a T

e T
2% @Y 6) @) j‘ t |

olZ%ds’b??‘iﬁ’lo

Nearest Neighbor - demo

“
(1) 4 !
NN 0
}Sa“') (Q (0) :
2> @) G, y @9 ? 21

otzaqsv?tcﬁo

Nearest Neighbor - demo

[
—

(1 ’ 2)
7~

24
(5,4) |
(2, 3) ("’ ‘7>

.’ b \
/ N

A

© = MWL O NDOD
._

o!Z%‘ISD??Q’ID

BEST‘ (an)

B-Tree Motivation

In Big-O we have assumed uniform time for all operations,
but this isn’t always true.

However, seeking data from the cloud may take 40ms+.
...an O(lg(n)) AVL tree no longer looks great: °

BTree Design Motivations

Knowing that we have large seek times for data, we want
to:

BTree (of order m)

-3

8

23

25

31

42

43

55

Goal: Minimize the number of reads!
Build a tree that uses

[1 network packet]
[1 disk block]

/ node

BTree Insertion

A BTrees of order m is an m-way tree:
- All keys within a node are ordered
- All leaves contain hold no more than m-1 keys.

BTree Insertion

When a BTree node reaches m keys:

BTree Recursive Insert

23

42

31

43

55

BTree Recursive Insert

23

42

31

43

55

BTree Visualization/Tool

https://www.cs.usfca.edu/~galles/visualization/BTree.html

https://www.cs.usfca.edu/~galles/visualization/BTree.html

Btree Properties

A BTrees of order m is an m-way tree:
- All keys within a node are ordered
- All leaves contain no more than m-1 keys.

- All internal nodes have exactly one more child than keys
- Root nodes can be a leaf or have [2, m] children.

- All non-root, internal nodes have [ceil(m/2), m] children.

- All leaves are on the same level

Blree

17

12

14

16

28

48

25

26

29

45

52

53

55

68

BTree Search

-11

23

42

55

25

31

43

60

x

ree Search

OO JdJo Ul d WN R

bool Btree:: exists(BTreeNode & node, const K & key) ({
unsigned i;
for (i = 0; i < node.keys ct && key > node.keys [i]; i++) { }
if (i < node.keys ct && key == node.keys [i]) {
return true;
}
if (node.isLeaf ()) {
return false;
} else {
BTreeNode nextChild = node. fetchChild(i); 23
return _exists(nextChild, key);
}
}
-3 42 | 55
-11 8 25 | 31 43

60

BTree Analysis

The height of the BTree determines maximum number of
possible in search data.

...and the height of the structure is:

Therefore: The number of seeks is no more than

...suppose we want to prove this!

BTree Analysis

In our AVL Analysis, we saw finding an upper bound on the
height (given n) is the same as finding a lower bound on the
nodes (given h).

We want to find a relationship for BTrees between the
number of keys (n) and the height (h).

BTree Analysis

Strategy:
We will first count the number of nodes, level by level.

Then, we will add the minimum number of keys per node (n).

The minimum number of nodes will tell us the largest possible
height (h), allowing us to find an upper-bound on height.

BTree Analysis

The minimum number of nodes for a BTree of order m at
each level:

root:
level 1:
level 2:

level 3:

level h:

BTree Analysis

The total number of nodes is the sum of all of the levels:

BTree Analysis

The total number of keys:

BTree Analysis

The smallest total number of keys is:

So an inequality about n, the total number of keys:

Solving for h, since h is the number of seek operations:

BTree Analysis
Given m=101, a tree of height h=4 has:

Minimum Keys:

Maximum Keys:

