
CS 225
Data Structures

February 16 – BST Rotations
G Carl Evans



Height-Balanced Tree
What tree makes you happier?

Height balance:   b = height(TR) - height(TL)

A tree is height balanced if:
 For all nodes in the tree |b| < 2.

95

7

7

5

9



BST Rotation
We will perform a rotation that maintains two properties

1. Maintain the BST property

2. Change a “stick” into a “mountain”



13

10 25

38

51

84

89

A

B

C D



13

10 25

38

51

84

89

A

B

C D

84

51 89

A B C D



13

10 25

37

38

51



13

10

25

37

38

51



13

10 25

37

38

51



BST Rotation Summary
- Four kinds of rotations (L, R, LR, RL)
- All rotations are local (subtrees are not impacted)
- All rotations are constant time: O(1)
- BST property maintained

GOAL:

We call these trees:



AVL Trees
Three issues for consideration:
- Rotations
- Maintaining Height
- Detecting Imbalance



AVL Tree Rotations
Four templates for rotations:



t

t1

t2

t3 t4

Theorem:
If an insertion occurred in subtrees 
t3 or t4 and a subtree was detected 
at t, then a __________ rotation 
about t restores the balance of the 
tree.

We gauge this by noting the balance 
factor of t->right is ______.

Finding the Rotation on Insert



t

t1

t2 t3

t4

Theorem:
If an insertion occurred in subtrees 
t2 or t3 and a subtree was detected 
at t, then a __________ rotation 
about t restores the balance of the 
tree.

We gauge this by noting the balance 
factor of t->right is ______.

Finding the Rotation on Insert



Insertion into an AVL Tree

5

3 6

4

2

8

10

9 12

111 7struct TreeNode {
  T key;
  unsigned height;
  TreeNode *left;
  TreeNode *right;
};

1
2
3
4
5
6

_insert(6.5)



Insert (pseudo code):
1: Insert at proper place
2: Check for imbalance
3: Rotate, if necessary
4: Update height

Insertion into an AVL Tree

5

3 6

4

2

8

10

9 12

111 7struct TreeNode {
  T key;
  unsigned height;
  TreeNode *left;
  TreeNode *right;
};

1
2
3
4
5
6

_insert(6.5)


