Height-Balanced Tree

What tree makes you happier?

Height balance: \(b = \text{height}(T_R) - \text{height}(T_L) \)

A tree is height balanced if:
For all nodes in the tree \(|b| < 2\).
BST Rotation

We will perform a rotation that maintains two properties

1. Maintain the BST property

2. Change a “stick” into a “mountain”
BST Rotation Summary

- Four kinds of rotations (L, R, LR, RL)
- All rotations are local (subtrees are not impacted)
- All rotations are constant time: O(1)
- BST property maintained

GOAL:

We call these trees:
AVL Trees

Three issues for consideration:
- Rotations
- Maintaining Height
- Detecting Imbalance
AVL Tree Rotations

Four templates for rotations:
Finding the Rotation on Insert

Theorem:
If an insertion occurred in subtrees t_3 or t_4 and a subtree was detected at t, then a __________ rotation about t restores the balance of the tree.

We gauge this by noting the balance factor of $t->right$ is ______.
Theorem:
If an insertion occurred in subtrees t_2 or t_3 and a subtree was detected at t, then a __________ rotation about t restores the balance of the tree.

We gauge this by noting the balance factor of t-right is ______.
Insertion into an AVL Tree

```c
struct TreeNode {
    T key;
    unsigned height;
    TreeNode *left;
    TreeNode *right;
};
```

`_insert(6.5)`
Insertion into an AVL Tree

Insert (pseudo code):
1: Insert at proper place
2: Check for imbalance
3: Rotate, if necessary
4: Update height

```c
struct TreeNode {
    T key;
    unsigned height;
    TreeNode *left;
    TreeNode *right;
};
```

\text{insert}(6.5)