CS 225

Data Structures

February 7 – Trees Theory and Traversal

G Carl Evans

Theorem: If there are **n** data items in our representation of a binary tree, then there are _____ NULL pointers.

Base Cases:

n = 0:

n = 1:

n = 2:

Induction Hypothesis:

Consider an arbitrary tree **T** containing **n** data elements:

Access All the Nodes - Traversals

Traversals


```
49    template < class T>
    void BinaryTree < T>::__Order (TreeNode * cur)
51    {
52
53
54
55
56
57
58 }
```

Traversals

Traversals

A Different Type of Traversal

A Different Type of Traversal

Traversal vs. Search

Traversal

Search

Search: Breadth First vs. Depth First

Strategy: Breadth First Search (BFS)

Strategy: Depth First Search (DFS)

Dictionary ADT

Data is often organized into key/value pairs:

```
UIN → Advising Record

Course Number → Lecture/Lab Schedule

Node → Incident Edges

Flight Number → Arrival Information

URL → HTML Page
```

•••

Dictionary.h

```
#pragma once
 2
 3
   class Dictionary {
 5
     public:
 8
 9
10
11
12
13
14
15
16
17
18
19
20
    private:
       // ...
21
22 };
```

Binary Tree as a Search Structure

Binary Tree as a Search Structure

Binary _____ Tree (BST)

A **BST** is a binary tree **T** such that:

