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Data Structures

February 8 — Trees Theory
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Binary Tree — Defined

A binary tree T is either:
OR

'T=(r;T|_;TR)



Tree Property: height

height(T): length of the longest path 0
from the root to a leaf

Given a binary tree T: ° e

height(T) = max(height(T,),
height(T;) ) + 1
height(@) = -1



Tree Property: full
A tree F is full if and only if:

1.

2.



Tree Property: perfect
A perfect tree P is defined in terms of 0

the tree’s height.
() (X

Let P, be a perfect tree of height h, and:

1.



Tree Property: complete

Conceptually: A perfect tree for every
level except the last, where the last level
if “pushed to the left”.

Slightly more formal: For all levels k in
[0, h-1], k has 2k nodes. For level h, all
nodes are “pushed to the left”.



Tree Property: complete
A complete tree C of height h, C,:

1.C,={}
2. C, (where h>0) = {r, T, Tr} and either:
T, is and Ty is
OR

T, is and Ty is




Tree Property: complete
Is every full tree complete? 0
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If every complete tree full?



Tree ADT

insert, inserts an element to the tree.

remove, removes an element from the tree.

access, access elements from the tree.



BinaryTree.h
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#pragma once

template <class T>
class BinaryTree {
public:
/* ... */

private:
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Trees aren’t new:
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Trees aren’t new:
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How many NULLs?

Theorem: If there are n data items in our representation of
a binary tree, then there are NULL pointers.




How many NULLs?

Base Cases:

n=0:

>
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How many NULLs?

Induction Hypothesis:



How many NULLs?

Consider an arbitrary tree T containing n data elements:



Access All the Nodes - Traversals



Traversals

49 | template<class T>

50 | void BinaryTree<T>:: Order (TreeNode * cur)
51| {
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Traversals
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template<class T>
void BinaryTree<T>:: Order (TreeNode * cur) ({
if (cur '= NULL) {

Order (cur->left) ;

Order (cur->right) ;




Traversals
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template<class T>
void BinaryTree<T>:: Order (TreeNode * cur) ({
if (cur '= NULL) {

Order (cur->left) ;

Order (cur->right) ;




A Different Type of Traversal



A Different Type of Traversal

*
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template<class T>
void BinaryTree<T>: :levelOrder (TreeNode * root) ({




Traversal vs. Search

Traversal

Search



Search: Breadth First vs. Depth First
Strategy: Breadth First Search (BFS)

Strategy: Depth First Search (DFS)



