CS 225

Data Structures

February 8 – Trees Theory

G Carl Evans

Binary Tree – Defined

A binary tree T is either:

$$\cdot T = \emptyset$$

OR

•
$$T = (r, T_L, T_R)$$

Tree Property: height

height(T): length of the longest path from the root to a leaf

Given a binary tree T:

Tree Property: full

A tree **F** is **full** if and only if:

1.

2.

Tree Property: perfect

A **perfect** tree **P** is defined in terms of the tree's height.

Let **P**_h be a perfect tree of height **h**, and:

1.

2.

Tree Property: complete

Conceptually: A perfect tree for every level except the last, where the last level if "pushed to the left".

X

Slightly more formal: For all levels k in [0, h-1], k has 2^k nodes. For level h, all nodes are "pushed to the left".

Tree Property: complete

A complete tree C of height h, Ch:

- 1. $C_{-1} = \{\}$
- 2. C_h (where h>0) = {r, T_L , T_R } and either:

 T_L is _____ and T_R is _____

OR

 T_L is _____ and T_R is _____

Tree Property: complete

Is every **full** tree **complete**?

If every **complete** tree **full**?

Tree ADT

insert, inserts an element to the tree.

remove, removes an element from the tree.

access, access elements from the tree.

BinaryTree.h

```
#pragma once
   template <class T>
   class BinaryTree {
     public: /* ... */
 5
 8
     private:
 9
10
11
12
13
14
15
16
17
18
19 };
```

Trees aren't new:

Theorem: If there are **n** data items in our representation of a binary tree, then there are _____ NULL pointers.

Base Cases:

n = 0:

n = 1:

n = 2:

Induction Hypothesis:

Consider an arbitrary tree **T** containing **n** data elements:

Access All the Nodes - Traversals

Traversals


```
49  template<class T>
  void BinaryTree<T>::__Order(TreeNode * cur)
51  {
52
53
54
55
56
57
58 }
```

Traversals

Traversals

A Different Type of Traversal

A Different Type of Traversal

Traversal vs. Search

Traversal

Search

Search: Breadth First vs. Depth First

Strategy: Breadth First Search (BFS)

Strategy: Depth First Search (DFS)