CS 225

Data Structures

February 8 — Trees Theory

G Carl Evans



Binary Tree — Defined

A binary tree T is either:
OR

'T=(r;T|_;TR)



Tree Property: height

height(T): length of the longest path 0
from the root to a leaf

Given a binary tree T: ° e

height(T) = max(height(T,),
height(T;) ) + 1
height(@) = -1



Tree Property: full
A tree F is full if and only if:

1.

2.



Tree Property: perfect
A perfect tree P is defined in terms of 0

the tree’s height.
() (X

Let P, be a perfect tree of height h, and:

1.



Tree Property: complete

Conceptually: A perfect tree for every
level except the last, where the last level
if “pushed to the left”.

Slightly more formal: For all levels k in
[0, h-1], k has 2k nodes. For level h, all
nodes are “pushed to the left”.



Tree Property: complete
A complete tree C of height h, C,:

1.C,={}
2. C, (where h>0) = {r, T, Tr} and either:
T, is and Ty is
OR

T, is and Ty is




Tree Property: complete
Is every full tree complete? 0

OJOONO
» @

If every complete tree full?



Tree ADT

insert, inserts an element to the tree.

remove, removes an element from the tree.

access, access elements from the tree.



BinaryTree.h

oo Jdo Ul WD K

RRRRRRRRBRR R
WOJdoOULd WNR OV

#pragma once

template <class T>
class BinaryTree {
public:
/* ... */

private:




—
N

Trees aren’t new:



ZTTZYCTST

—
N

G
//
Inn
\¢¢
1l
@ 0

Trees aren’t new:
(o)
s,
(2) (2)(2) (5



How many NULLs?

Theorem: If there are n data items in our representation of
a binary tree, then there are NULL pointers.




How many NULLs?

Base Cases:

n=0:

>
1|
=



How many NULLs?

Induction Hypothesis:



How many NULLs?

Consider an arbitrary tree T containing n data elements:



Access All the Nodes - Traversals



Traversals

49 | template<class T>

50 | void BinaryTree<T>:: Order (TreeNode * cur)
51| {

52
53
54
55

56

57
58|}




Traversals

49

50

51

52

53

54

55

56

57
58

template<class T>
void BinaryTree<T>:: Order (TreeNode * cur) ({
if (cur '= NULL) {

Order (cur->left) ;

Order (cur->right) ;




Traversals

49

50

51

52

53

54

55

56

57
58

template<class T>
void BinaryTree<T>:: Order (TreeNode * cur) ({
if (cur '= NULL) {

Order (cur->left) ;

Order (cur->right) ;




A Different Type of Traversal



A Different Type of Traversal

*

RHOWVWOO JdJoUlbd WNER

template<class T>
void BinaryTree<T>: :levelOrder (TreeNode * root) ({




Traversal vs. Search

Traversal

Search



Search: Breadth First vs. Depth First
Strategy: Breadth First Search (BFS)

Strategy: Depth First Search (DFS)



