

Lab_bst : Beautiful BSTs
Brad Solomon

Overview

In this week’s lab you will work with binary search trees, review and
implement the fundamentals of the ADT, and use your constructed
trees to observe the distinction between ‘worst case’ and ‘expected’
performance on real-world datasets.

Pointers vs Reference vs Reference Pointers

Which of the following would change the value of input outside the
function? Which functions can change the value if you change the
contents (not the header) of the function?

pointers.cpp
void changeValue(int input){
 input = 10; // Changes value but is local only
 // No way to access original variable
}

void changeValue(int * input){
 input = 10; // Points to address 10 but is local only
 *input = 10; // Would change value
}

void changeValue(int & input){
 input = 10; // Changes value externally

}

void changeValue(int *& input){
 input = 10; // Points to address 10 now externally
 *input = 10; // Would change value
}

What are the values of x and y after this program runs?

pointers.cpp
void changeValue(int *& input){
 *input = 1;
 input = nullptr;
}

int main(int argc, char** argv)
{
 int x = 42;

 int* y = &x;

 changeValue(y);
}

Finding an element in a BST:

What are the return types for find() and _find()?

BST.hpp
template <typename K, typename V>

________V__________________________ find(const K & key) {
...
}

template <typename K, typename V>

________Node * &________________________________ _find
(Node *& node, const K & key) {

}

What returns when we
call:

Find(25):

A reference to a pointer
that points to Node 25.
E.g. changing the value
changes <Node13>->right

Find(9):

A reference to a pointer that points to nullptr. (<Node10>-
>left)

Running time? ____O(n)_____ Bound by? ___height___

Inserting an element in a BST:

Draw the changes to the tree
when you insert:

Insert(9)

10->left = 9

Insert(81)

66->right = 81

Running time? ____O(n)_____ Bound by? ___height___

Removing an element
from a BST:

Redraw the tree after these
changes.

_remove(40)

_remove(25)

_remove(10)

_remove(13)

Zero-child Remove One-child remove

Find node
Delete node
Set the parent node’s
pointer to null

Find node
Make temporary pointer to
node
Set the parent node’s
pointer to node’s child
Delete node

Two Child Remove

Find node
Find the IOP (or IOS) to node
Swap IOP (or IOS) and node
Recursively call remove to delete node in its new
location

The two child remove will always recurse to either a 0 or 1
child remove – why?

Because the in-order predecessor by definition is the right-
most left child of the node and will not have a right child (or
that node would be the IOP).

The same logic holds for IOS

Running time? ____O(n)_____ Bound by? ___height___

